China Professional CHINAMFG XL Types High-Pressure Rubber Flexible Spider Jaw Coupling

Product Description

XL Types High-Pressure Rubber Flexible Spider Jaw Coupling 

XL Type Flexible Spider Jaw Coupling comprises a convex claw block that can be avoided due to external constraints, internal deformation, and centrifugal impact deformation; in concave-convex claw, the pressure on the surface of the involute tooth is very small, even under overload, the tooth will not wear or deformation.
 

Flexible jaw couplings are used in power transmission of industrial equipment such as metallurgy, mining, lifting, transportation, petroleum, chemical industry, shipbuilding, textile, light industry, agricultural machinery, and industrial equipment such as pumps, fans, compressors, machine tools, gearboxes, mixers, printing machines, and conveyors.

 

Advantage:

Run smoothly;

Easy to install;

Compensate displacement (axial, radial, angular);

 XL Star Type Flexible Coupling Main Dimension:

Type Nominal torque
Tn/N·m
Shaft hole diameter L   D D1 B1 S
d1,d2 Y J1,Z1
XL1 20 6,7 18 40 32 12 2
8,9 22
10,11 25 22
12,14 32 27
16,18,19 42 30
XL2 71 8,9 22 55 40 14
10,11 25 22
12,14 32 27
16,18,19 42 30
20,22,24 52 38
XL3 200 10,11 25 22 65 48 15 2.5
12,14 32 27
16,18,19 42 30
20,22,24 52 38
25,28 62 44
XL4 400 12,14 32 27 80 66 18 3
16,18,19 42 30
20,22,24 52 38
25,28 62 44
30,32,35,38 82 60
XL5 560 14 32 27 95 75 20
16,18,19 42 30
20,22,24 52 38
25,28 62 44
30,32,35,38 82 60
40,42 112 84
XL6 630 16,18,19 42 30 105 85 21 3.5
20,22,24 52 38
25,28 62 44
30,32,35,38 82 60
40,42,45,48 112 84
XL7 800 20,22,24 52 38 120 98 22 4
25,28 62 44
30,32,35,38 82 60
40,42,45,48,50,55 112 84
XL8 900 22,24 52 38 135 115 26 4.5
25,28 62 44
30,32,35,38 82 60
40,42,45,48,50,55 112 84
60,63,65 142 107
XL9 2000 30,32,35,38 82 60 160 135 30 5
40,42,45,48,50,55,56 112 84
60,63,65,70,71,75 142 107
XL10 5000 40,42,45,48,50,55,56 112 84 200 160 34 5.5
60,63,65,70,71,75 142 107
80,85,90 172 132
XL11 7100 50,55,56 112 84 225 180 38 6
60,63,65,70,71,75 142 107
80,85,90,95 172 132
100 212 167
XL12 8000 60,63,65,70,71,75 142 107 255 200 42 6.5
80,85,90,95 172 132
100,110 212 167
XL13 10000 60,63,65,70,71,75 142 107 290 230 46 7
80,85,90,95 172 132
100,110,120,125 212 167
XL14 14000 60,63,65,70,71,75 142 107 320 255 50 7.5
80,85,90,95 172 132
100,110,120,125 212 167
130,140 252 202
XL15 20000 80,85,90,95 172 132 370 290 57 9
100,110,120,125 212 167
130,140,150 252 202
160 302 242
XL16 25000 85,90,95 172 132 420 325 64 10.5
100,110,120,125 212 167
130,140,150 252 202
160,170,180 302 242

Product Show:


♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC, SWP, SWZ
Tooth Coupling CL, CLZ, GCLD, GIICL,
GICL, NGCL, GGCL, GCLK
Disc Coupling JMI, JMIJ, JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

Our Company
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide products of good quality at a reasonable price.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

Our Services
1. Design Services
Our design team has experience in coupling relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artwork in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order then the cost of the sample will be deducted.

Q 5: How extended is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the cost implications of using flexible couplings compared to other coupling types?

When considering the cost implications of using flexible couplings compared to other coupling types, several factors come into play. While flexible couplings may have a higher upfront cost in some cases, they often offer cost savings in the long run due to their advantages and reduced maintenance requirements.

  • Upfront Cost: In terms of upfront cost, flexible couplings can vary depending on the design, material, and size. Some high-performance flexible couplings with specialized features may have a higher initial cost than simpler coupling types. For instance, certain specialized couplings used in demanding applications like high-speed precision machinery or corrosive environments might be more expensive.
  • Maintenance Costs: Flexible couplings generally have lower maintenance costs compared to certain rigid coupling types. Rigid couplings, such as gear couplings or disc couplings, may require periodic maintenance to check for wear, lubrication, and alignment. In contrast, many flexible couplings, especially those with elastomeric elements, are self-lubricating and require little to no maintenance.
  • Reduced Downtime: Due to their ability to accommodate misalignments and dampen vibrations, flexible couplings can reduce the wear and tear on connected equipment. This reduction in wear can lead to less frequent downtime for repairs or replacements, resulting in improved productivity and cost savings.
  • Longevity: Flexible couplings are designed to absorb shocks and vibrations, which can extend the lifespan of connected equipment. By minimizing stress and wear on components, flexible couplings contribute to the longevity of machinery and reduce the need for premature replacements.
  • Energy Efficiency: Some flexible couplings, such as beam couplings or certain elastomeric couplings, have low mass and inertia, contributing to better energy efficiency in rotating systems. By reducing energy losses, these couplings can result in cost savings over time.
  • Application Specificity: In some cases, specialized coupling types might be necessary to meet specific application requirements. While these specialized couplings may have higher costs, they are designed to optimize performance and reliability in those specific scenarios.
  • Compatibility and Adaptability: Flexible couplings are often more versatile in terms of accommodating shaft misalignment and different shaft sizes. Their adaptability can reduce the need for custom-made or precisely machined components, potentially saving costs in certain installations.

Overall, the cost implications of using flexible couplings compared to other coupling types depend on the specific application and its requirements. While they may have a higher initial cost in some cases, the long-term benefits, such as reduced maintenance, increased equipment longevity, and improved system efficiency, often justify the investment in flexible couplings.

flexible coupling

What are the differences between single and double flexible coupling designs?

Single and double flexible couplings are two common designs used for power transmission in various mechanical systems. Here are the main differences between the two:

  • Design: The primary difference lies in their configuration. A single flexible coupling consists of one flexible element connecting two shafts, while a double flexible coupling, also known as a two-piece flexible coupling, uses two flexible elements with an intermediate shaft in between. The double flexible coupling resembles two single couplings connected in series.
  • Torsional Flexibility: Single flexible couplings typically provide greater torsional flexibility than double flexible couplings. The presence of an intermediate shaft in the double coupling design adds some rigidity and reduces the overall torsional flexibility of the system.
  • Compensation of Misalignment: Both single and double flexible couplings can compensate for angular and parallel misalignment between shafts. However, due to its additional flexible element, the double flexible coupling may have slightly better misalignment compensation capabilities.
  • Length and Space: Single flexible couplings are generally shorter in length compared to double flexible couplings. The double flexible coupling’s design requires additional space to accommodate the intermediate shaft, making it longer than the single coupling.
  • Shaft Separation: Single flexible couplings connect the two shafts directly without any intermediate components, while the double flexible coupling separates the shafts using an intermediate shaft. This shaft separation in the double design can be advantageous in certain applications.
  • Stiffness: The double flexible coupling tends to be slightly stiffer than the single flexible coupling due to the presence of the intermediate shaft, which may affect its ability to absorb vibrations and shock loads.
  • Application: Single flexible couplings are commonly used in various applications, including pumps, compressors, fans, and general power transmission systems. Double flexible couplings are often preferred in applications where a higher level of torsional stiffness is required, such as certain industrial machinery.

Both single and double flexible coupling designs have their advantages and are suitable for different types of machinery and power transmission requirements. The choice between the two depends on factors such as the specific application, the level of misalignment compensation needed, the available space, and the desired torsional flexibility for the system.

flexible coupling

What is a flexible coupling and how does it work?

A flexible coupling is a mechanical device used to connect two shafts while allowing for relative movement between them. It is designed to transmit torque from one shaft to another while compensating for misalignment, vibration, and shock. Flexible couplings are essential components in various rotating machinery and systems, as they help protect the connected equipment and enhance overall performance.

Types of Flexible Couplings:

There are several types of flexible couplings, each with its unique design and characteristics. Some common types include:

  • Jaw Couplings: Jaw couplings feature elastomer spiders that fit between two hubs. They can accommodate angular and parallel misalignment while dampening vibrations.
  • Disc Couplings: Disc couplings use thin metallic discs to connect the shafts. They are highly flexible and provide excellent misalignment compensation.
  • Gear Couplings: Gear couplings use gear teeth to transmit torque. They offer high torque capacity and can handle moderate misalignment.
  • Beam Couplings: Beam couplings use a single piece of flexible material, such as a metal beam, to transmit torque while compensating for misalignment.
  • Bellows Couplings: Bellows couplings use a bellows-like structure to allow for axial, angular, and parallel misalignment compensation.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot to allow for misalignment compensation.

How a Flexible Coupling Works:

The operation of a flexible coupling depends on its specific design, but the general principles are similar. Let’s take the example of a jaw coupling to explain how a flexible coupling works:

  1. Two shafts are connected to the coupling hubs on either side, with an elastomer spider placed between them.
  2. When torque is applied to one shaft, it causes the spider to compress and deform slightly, transmitting the torque to the other shaft.
  3. In case of misalignment between the shafts, the elastomer spider flexes and compensates for the misalignment, ensuring smooth torque transmission without imposing excessive loads on the shafts or connected equipment.
  4. The elastomer spider also acts as a damping element, absorbing vibrations and shocks during operation, which reduces wear on the equipment and enhances system stability.

Overall, the flexibility and ability to compensate for misalignment are the key features that allow a flexible coupling to function effectively. The choice of a specific flexible coupling type depends on the application’s requirements, such as torque capacity, misalignment compensation, and environmental conditions.

China Professional CHINAMFG XL Types High-Pressure Rubber Flexible Spider Jaw Coupling  China Professional CHINAMFG XL Types High-Pressure Rubber Flexible Spider Jaw Coupling
editor by CX 2024-05-08