Tag Archives: flange coupling

China Custom Flexible Exhaust Pipe Coupling with Flange for Auto Repair

Product Description

truck chrome exhaust pipe, hot sale truck exhaust pipe

We are the   top 10   leading brand.We have   24  years of   exhaust system and industrial pipe.

Founded in 1992 and experienced in the field of exhaust system and industrial pipe for 24 years.

We have large capacity, over 200000pcs/month.

Management system certification:ISO9001.ISO14001.TSI16949.

We have our own technical and mould deparmtent, ready for any customized products.

Sales network expands from over domestic sales to all over the world.
 

we have all kinds of products can be adapt  any environment. you can choose which 1 is suitable to your products. pls tell us about your requirements,we will reply you immediately, looking CHINAMFG to hearing from you.

 

 

The Main Size for type A,B and C  

NDMINAL LINSIDE 
DIAMETER I.D
OVERALLLENGTH
 O/L
OVERALLLENGTH O/L OVERALLLENGTHO/L NOMINAL INSIDE 
DIAMETER I.D
OVERALLLENGTH O/L
1-3/4 ” (45mm) 4 ” (102mm)  2-1/2 “(63.5mm) 4 ” (102mm) 43mm 120mm
6 ” (152mm) 6 ” (152mm) 165mm
8 ” (203mm) 8 ” (203mm) 180mm
9 ” (230mm) 9 ” (230mm) 50mm(52mm) 120mm
10 ” (254mm) 10 ” (254mm) 165mm
11 ” (280mm) 11 ” (280mm) 54.5mm 120mm
2″(51mm) 12 ” (305mm) 12 ” (305mm) 150mm
4 ” (102mm)  3 “(76.2mm) 4 ” (102mm) 180mm
6 ” (152mm) 6 ” (152mm) 200mm
8 ” (203mm) 8 ” (203mm) 250mm
9 ” (230mm) 10 ” (254mm) 60mm(61mm) 160mm
10 ” (254mm) 12 ” (305mm) 200mm
2-1/4 ” (57.2mm) 11 ” (280mm) 6 ” (152mm) 240mm
12 ” (305mm)  3-1/2″ (89mm) 8 ” (203mm) 65mm 150mm
4 ” (102mm) 10 ” (254mm) 200mm
6 ” (152mm) 12 ” (305mm) 70mm 100m
8 ” (203mm)  4″ (102mm) 8 ” (203mm) 120mm
9 ” (230mm) 10 ” (254mm) 150mm
10 ” (254mm) 12 ” (305mm) 200mm
11 ” (280mm)  Other sizes are available,ID32,ID36,ID38,ID40,ID46,ID48,ID115,ID125etc
12 ” (305mm)

Our company

ZheJiang YueDing company produce quality products and work to provide constant communication with our clients. Our dedication to CHINAMFG allows us to be a stable solution in the marketplace with a quick lead time. We primarily focus on exhaust pipes, including metal hoses and other pipes that are used within the automotive industry . We have designers, engineers, and others who are involved in the process of manufacturing parts. We explore the top materials to use as well as continuously add more technology and innovation to produce higher quality parts. Flexible Exhaust Pipe

 

Exhibitions

Every year we john 4-5 oversea fairs to meet our customers.What we show is our ability, and what you feel will be our profession . We take the time to answer questions and ensure that our clients understand all there is to know about our products. Further, we work with all of our clients to help find the right products that will meet both needs and budget. We work hard to provide good customer service and ensure that it is never just about sales, but about building a relationship.

 

Our customers

As a reliable partner and CHINAMFG supplier, we offer advanced products and have large stock. Our product are sold to many country,have been exported to North America,Western Europe,Southeast Asia,South America,Northern Europe,Mid East,Southern Europe,Africa and many other countries. We would like to cooperate with global customers and make the good protection project in world market.

 

Work shop

ZheJiang YueDing Company have a production team of hundreds of individuals who work hard to create high quality items that are meant to last. Durability is a top focus and our employees have been trained to ensure they know exactly what needs to be done to produce all of the products that we have available. We take pride in our work and so does each and every 1 of the employees within our Production Department.

 

Certification

 

FAQ

1. Q: How about the payment terms?

Normally 30% deposit in advance. It can be discussed when we have friendly relationship.

2. How about Delivery time?

We can produce 200,000 pcs per month, large capacity. Normally, 15 days.

3. Q : What’s the price?

Reasonable price, competitive price, and acceptable prices, which are all based on good quality.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Flexibility of Retrofitting Flexible Flange Couplings for Improved Performance

Yes, flexible flange couplings can be retrofitted into existing systems to improve performance. Retrofitting is a cost-effective solution for upgrading older machinery or systems without the need for significant modifications or replacements.

Here are the key points to consider when retrofitting flexible flange couplings:

  • Compatibility: Before retrofitting, ensure that the selected flexible flange coupling is compatible with the existing system. Check the dimensions, torque capacity, and other specifications to ensure a proper fit and reliable performance.
  • Misalignment Compensation: Flexible flange couplings can accommodate misalignments, making them suitable for retrofitting into systems where misalignments may have occurred over time due to wear and tear or other factors. They can help restore proper alignment and improve system efficiency.
  • Vibration Reduction: If the existing system experiences excessive vibrations, retrofitting with flexible flange couplings can help dampen these vibrations and reduce the stress on components, leading to improved overall system performance and reliability.
  • Torque Transmission: Flexible flange couplings are designed to transmit high torques, which is beneficial for retrofitting into systems where torque requirements may have increased or changed since the original coupling was installed.
  • Installation: Retrofitting should be done carefully and by following the manufacturer’s guidelines. Proper installation ensures that the flexible flange coupling operates as intended and provides the desired performance improvements.
  • System Evaluation: Before retrofitting, evaluate the overall system to identify any potential issues that may need to be addressed. Retrofitting with flexible flange couplings can enhance performance, but it’s essential to ensure that other components are in good condition and suitable for continued operation.

Flexible flange couplings offer versatility and adaptability, making them a viable option for retrofitting into various mechanical systems. They can improve the system’s performance, reduce maintenance requirements, and extend the service life of the equipment.

However, it’s advisable to consult with coupling manufacturers or engineering experts to determine the best type and size of flexible flange coupling for the specific retrofitting application. They can provide valuable insights and recommendations to ensure a successful and effective retrofitting process.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Custom Flexible Exhaust Pipe Coupling with Flange for Auto Repair  China Custom Flexible Exhaust Pipe Coupling with Flange for Auto Repair
editor by CX 2024-04-17

China Professional Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do flexible couplings handle axial movement in rotating machinery?

Flexible couplings are designed to handle different types of misalignments in rotating machinery, including axial movement or axial misalignment. Axial movement occurs when there is displacement along the axis of rotation, causing one shaft to move closer to or away from the other shaft. Here’s how flexible couplings handle axial movement:

  • Sliding Capability: Many flexible couplings, especially those with elastomeric elements or certain designs, can slide along the shafts they connect. This sliding capability allows the coupling to accommodate axial movement without introducing additional stress on the connected components. The elastomeric elements can compress or stretch slightly to absorb the axial displacement.
  • Multiple-piece Designs: Some flexible couplings consist of multiple pieces, which allow for axial movement. These designs often have a floating member or a spacer that separates the two shaft-connected components. The floating member can move axially as needed, while still transmitting torque and compensating for other misalignments.
  • Double-Cardanic Design: Certain high-performance flexible couplings use a double-cardanic design, allowing for misalignment in multiple directions, including axial movement. This design features two sets of flexible elements that work together to accommodate different misalignments and provide a high degree of flexibility.

It’s important to note that while flexible couplings can handle a certain degree of axial movement, excessive axial misalignment might require a different type of coupling or additional measures to be addressed properly.

During the selection and installation process, it’s essential to consider the application’s axial movement requirements and choose a flexible coupling that can accommodate the expected axial displacement while still providing the desired performance, such as vibration damping, shock absorption, or precision motion control.

flexible coupling

How does a flexible coupling handle alignment issues in long-distance shaft connections?

In long-distance shaft connections, it is common to encounter alignment issues due to factors such as thermal expansion, foundation settlement, or machinery shifts. Flexible couplings play a crucial role in handling these alignment issues and ensuring efficient power transmission. Here’s how they achieve this:

  • Misalignment Compensation: Flexible couplings are designed to accommodate both angular and parallel misalignments between shafts. When the shafts are not perfectly aligned, the flexibility of the coupling allows it to bend or flex, reducing the transmission of misalignment forces to connected equipment.
  • Reduced Stress on Equipment: By absorbing and compensating for misalignment, flexible couplings reduce the stress and loads imposed on connected machinery. This feature is particularly important in long-distance shaft connections, where misalignment can be more pronounced.
  • Torsional Flexibility: In addition to angular and parallel misalignments, long-distance shaft connections may also experience torsional misalignment. Flexible couplings can handle torsional flexibility, allowing smooth torque transmission even if the connected shafts have slightly different rotational speeds.
  • Vibration Damping: Long-distance shaft connections can be susceptible to vibrations due to the extended span and potential resonance. Flexible couplings help dampen these vibrations, protecting the connected equipment from excessive wear and fatigue.
  • Resilience to Shock Loads: Long-distance shaft connections in industrial settings may experience shock loads due to sudden starts, stops, or equipment malfunctions. Flexible couplings can absorb and dissipate some of these shock loads, safeguarding the connected components.
  • Longevity: By mitigating the effects of misalignment, vibrations, and shock loads, flexible couplings contribute to the longevity of the connected equipment and reduce maintenance and replacement costs over time.

When selecting a flexible coupling for long-distance shaft connections, it is essential to consider factors such as the degree of misalignment, torque requirements, operating conditions, and the environment in which the coupling will be used. Regular inspection and maintenance of the flexible coupling can further enhance its performance and ensure reliable operation in long-distance shaft connections.

flexible coupling

What is a flexible coupling and how does it work?

A flexible coupling is a mechanical device used to connect two shafts while allowing for relative movement between them. It is designed to transmit torque from one shaft to another while compensating for misalignment, vibration, and shock. Flexible couplings are essential components in various rotating machinery and systems, as they help protect the connected equipment and enhance overall performance.

Types of Flexible Couplings:

There are several types of flexible couplings, each with its unique design and characteristics. Some common types include:

  • Jaw Couplings: Jaw couplings feature elastomer spiders that fit between two hubs. They can accommodate angular and parallel misalignment while dampening vibrations.
  • Disc Couplings: Disc couplings use thin metallic discs to connect the shafts. They are highly flexible and provide excellent misalignment compensation.
  • Gear Couplings: Gear couplings use gear teeth to transmit torque. They offer high torque capacity and can handle moderate misalignment.
  • Beam Couplings: Beam couplings use a single piece of flexible material, such as a metal beam, to transmit torque while compensating for misalignment.
  • Bellows Couplings: Bellows couplings use a bellows-like structure to allow for axial, angular, and parallel misalignment compensation.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot to allow for misalignment compensation.

How a Flexible Coupling Works:

The operation of a flexible coupling depends on its specific design, but the general principles are similar. Let’s take the example of a jaw coupling to explain how a flexible coupling works:

  1. Two shafts are connected to the coupling hubs on either side, with an elastomer spider placed between them.
  2. When torque is applied to one shaft, it causes the spider to compress and deform slightly, transmitting the torque to the other shaft.
  3. In case of misalignment between the shafts, the elastomer spider flexes and compensates for the misalignment, ensuring smooth torque transmission without imposing excessive loads on the shafts or connected equipment.
  4. The elastomer spider also acts as a damping element, absorbing vibrations and shocks during operation, which reduces wear on the equipment and enhances system stability.

Overall, the flexibility and ability to compensate for misalignment are the key features that allow a flexible coupling to function effectively. The choice of a specific flexible coupling type depends on the application’s requirements, such as torque capacity, misalignment compensation, and environmental conditions.

China Professional Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China Professional Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-04-17

China Hot selling Nhf190 Hydraulic Safety Coupling with Flange flange coupling

Product Description

NHF Hydraulic Safety Coupling With Flange

Description of NHF Hydraulic Safety Coupling With Flange
1.Simple and convenient assembly and disassembly;
2.No keyway and thrust ring are required on the shaft;
3.The stress on the entire contact surface is relatively uniform, and the stress concentration is not obvious;
4.When the vibration load of the shaft system changes, the shaft will not be worn;
5.The position of the coupling on the shaft is easy to ensure, and the connection accuracy is high;
6.Can be used repeatedly, with high interchangeability.

Dimensions of NHF Hydraulic Safety Coupling With Flange

 

d

D

L

L1

Df

Dc

R

t

n

ds

Mt

Mass

mm

mm

mm

mm

mm

mm

mm

mm

 

mm

kNm

kg

NHF100

100

170

215

40

265

230

9

21

8

19

26

26

NHF110

110

186

235

45

295

255

10

23

8

21

35

34

NHF120

120

202

250

50

315

275

11

25

8

23

46

42

NHF130

130

218

270

55

340

295

11

27

8

25

58

52

NHF140

140

234

290

60

355

310

12

29

10

24

72

64

NHF150

150

250

300

60

380

335

13

31

10

26

89

75

NHF160

160

266

320

65

405

355

14

33

10

28

108

91

NHF170

170

282

340

70

430

375

15

35

10

30

130

108

NHF180

180

298

355

75

440

390

15

37

12

29

154

124

NHF190

190

314

375

80

465

410

16

39

12

30

181

145

NHF200

200

330

390

80

490

435

17

41

12

32

211

167

NHF210

210

346

410

85

515

455

18

43

12

33

244

193

NHF220

220

362

425

90

535

475

19

45

12

35

281

219

NHF230

230

378

445

95

560

495

19

47

12

37

321

249

NHF240

240

394

465

100

580

515

20

49

12

38

365

282

NHF250

250

410

475

100

605

535

21

51

12

40

412

313

NHF260

260

426

495

105

630

560

22

53

12

42

464

352

NHF270

270

442

515

110

655

580

23

55

12

43

519

394

NHF280

280

458

530

115

675

600

23

57

12

45

579

434

NHF290

290

474

550

120

700

620

24

59

12

46

644

483

NHF300

300

490

565

120

720

640

25

61

12

48

713

528

NHF310

310

506

580

125

750

665

26

63

12

50

786

582

NHF320

320

522

600

130

770

685

27

65

12

51

865

638

NHF330

330

538

620

135

795

705

27

67

12

53

948

700

NHF340

340

554

635

140

815

725

28

69

12

54

1037

759

NHF350

350

570

650

140

840

745

29

71

12

56

1131

823

NHF360

360

586

670

145

835

750

30

73

16

50

1231

878

 

d

D

L

L1

Df

Dc

R

t

n

ds

Mt

Mass

mm

mm

mm

mm

mm

mm

mm

mm

 

mm

kNm

kg

NHF370

370

602

690

150

855

770

31

75

16

51

1337

951

NHF380

380

618

705

155

880

790

31

77

16

53

1448

1026

NHF390

390

634

725

160

900

810

32

79

16

54

1565

1108

NHF400

400

650

740

160

930

835

33

81

16

56

1689

1194

NHF410

410

666

755

165

950

855

34

83

16

57

1819

1277

NHF420

420

682

775

170

975

875

35

85

16

58

1955

1376

NHF430

430

698

795

175

995

895

35

87

16

60

2098

1474

NHF440

440

714

810

180

1571

915

36

89

16

61

2248

1574

NHF450

450

730

825

180

1040

935

37

91

16

63

2405

1674

NHF460

460

746

845

185

1060

955

38

93

16

64

2569

1787

NHF470

470

762

860

190

1085

975

39

95

16

65

2740

1900

NHF480

480

778

880

195

1105

995

39

97

16

67

2918

2571

NHF490

490

794

900

200

1130

1015

40

99

16

68

3105

2156

NHF500

500

810

910

200

1150

1035

41

101

16

70

3299

2267

NHF510

510

826

930

205

1175

1055

42

103

16

71

3501

2411

NHF520

520

842

950

210

1195

1075

43

105

16

72

3711

2554

NHF530

530

858

965

215

1220

1095

43

107

16

74

3929

2698

NHF540

540

874

985

220

1240

1115

44

109

16

75

4155

2852

NHF550

550

890

1000

220

1270

1140

45

111

16

77

4391

3014

NHF560

560

906

1571

225

1290

1160

46

113

16

78

4634

3180

NHF570

570

922

1035

230

1310

1180

47

115

16

79

4887

3338

NHF580

580

938

1055

235

1335

1200

47

117

16

81

5149

3524

NHF590

590

954

1075

240

1355

1220

48

119

16

82

5420

3708

NHF600

600

970

1085

240

1380

1240

49

121

16

84

5700

3877

NHF610

610

986

1105

245

1400

1260

50

123

16

85

5990

4072

NHF620

620

1002

1125

250

1425

1280

51

125

16

86

6289

4284

NHF630

630

1018

1140

255

1445

1300

51

127

16

88

6599

4477

NHF640

640

1034

1160

260

1465

1320

52

129

16

89

6918

4692

NHF650

650

1050

1175

260

1495

1345

53

131

16

91

7247

4917

NHF660

660

1066

1190

265

1515

1365

54

133

16

92

7587

5128

NHF670

670

1082

1210

270

1540

1385

55

135

16

93

7937

5375

NHF680

680

1098

1230

275

1560

1405

55

137

16

95

8298

5618

NHF690

690

1114

1245

280

1585

1425

56

139

16

96

8669

5860

NHF700

700

1130

1260

280

1605

1445

57

141

16

98

9052

6097

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Torque and Speed Ratings of Flange Couplings

Flange couplings are available in various sizes and designs to accommodate a wide range of torque and rotational speed requirements. The torque and speed ratings of flange couplings depend on several factors, including their size, material, and design.

Torque Rating:

The torque rating of a flange coupling indicates the maximum amount of torque it can transmit without experiencing failure or damage. It is typically specified in Nm (Newton-meters) or lb-ft (pound-feet). The torque rating varies for different sizes and types of flange couplings. Larger flange couplings generally have higher torque ratings compared to smaller ones.

Speed Rating:

The speed rating of a flange coupling represents the maximum rotational speed at which it can operate reliably without excessive vibration or wear. It is typically expressed in RPM (revolutions per minute). The speed rating is influenced by factors such as the design, material, and balancing of the flange coupling. Higher-speed applications require flange couplings that can handle the increased centrifugal forces and dynamic loads associated with higher RPMs.

Size and Type:

The torque and speed ratings vary for different sizes and types of flange couplings. For example:

  • Smaller flange couplings, such as those used in light-duty applications, may have torque ratings ranging from a few Nm to several hundred Nm, and speed ratings up to a few thousand RPM.
  • Larger flange couplings, used in heavy-duty industrial applications, can have torque ratings exceeding several thousand Nm and speed ratings that may reach tens of thousands of RPM.
  • Flexible flange couplings may have slightly lower torque ratings compared to rigid flange couplings but offer greater misalignment compensation.

Manufacturer Specifications:

It is essential to refer to the manufacturer’s specifications and technical data to determine the specific torque and speed ratings for each size and type of flange coupling. Manufacturers typically provide detailed performance data to help users select the appropriate flange coupling for their specific application.

Application Considerations:

When selecting a flange coupling, it is crucial to consider the torque and speed requirements of the application. The operating conditions, such as load fluctuations and thermal effects, should also be taken into account to ensure the flange coupling’s reliable performance and longevity.

Conclusion:

Flange couplings come in various sizes and designs, each with its own torque and speed ratings. Properly selecting a flange coupling that meets the specific torque and speed requirements of the application is essential to ensure efficient and trouble-free power transmission in mechanical systems.

flange coupling

Key Features to Consider When Purchasing a Flange Coupling

When purchasing a flange coupling, it is essential to consider several key features to ensure it meets the specific requirements of your application. Here are the main factors to look for:

  • Type of Flange Coupling: There are various types of flange couplings, such as rigid, flexible, and fluid couplings. Choose the type that best suits your application’s needs, considering factors like misalignment compensation, torsional stiffness, and vibration damping.
  • Size and Dimensions: Select the flange coupling with the appropriate size and dimensions to fit your shafts and equipment. Consider shaft diameter, coupling length, and any space limitations.
  • Material: Flange couplings can be made from various materials, including steel, aluminum, stainless steel, and elastomers. Choose a material that offers the required strength, corrosion resistance, and durability for your operating conditions.
  • Torsional Rating: Check the torsional rating of the flange coupling to ensure it can handle the torque requirements of your application without failure or deformation.
  • Misalignment Compensation: If your application experiences shaft misalignment, opt for a flexible flange coupling that can accommodate angular, parallel, and axial misalignment to prevent stress on connected equipment.
  • Backlash: For precision applications, select a flange coupling with minimal or no backlash to maintain accurate positioning and reduce the effects of mechanical play.
  • Operating Speed: Consider the operating speed range of the flange coupling to ensure it can handle the rotational speed requirements without issues like resonance or fatigue.
  • Environmental Compatibility: Evaluate the flange coupling’s ability to withstand the environmental conditions of your application, such as temperature, humidity, and exposure to chemicals or corrosive substances.
  • Installation and Maintenance: Choose a flange coupling that is easy to install and maintain, as proper installation and periodic maintenance are crucial for optimal performance and longevity.
  • Cost and Value: Compare the cost of the flange coupling with its features and performance to ensure you are getting the best value for your investment.

By carefully considering these key features, you can select a flange coupling that not only meets the demands of your application but also ensures reliable and efficient power transmission while minimizing downtime and maintenance costs.

flange coupling

How Do Flange Couplings Compare to Other Types of Couplings in Terms of Performance?

Flange couplings offer several advantages and disadvantages compared to other types of couplings, and their performance depends on the specific requirements of the application. Here’s a comparison of flange couplings with other common coupling types:

1. Flexible Couplings:Misalignment Handling: Flexible couplings, such as elastomeric or jaw couplings, excel in handling shaft misalignment, both angular and axial. Flange couplings have limited misalignment accommodation compared to flexible couplings.- Vibration Damping: Flexible couplings can absorb and dampen vibrations, reducing the impact on connected equipment. Flange couplings, being rigid, provide less vibration dampening.- Load Capacity: Flange couplings can handle higher torque and loads due to their rigid design, making them suitable for heavy-duty applications. Flexible couplings have a lower torque and load capacity but offer other benefits.2. Gear Couplings:Misalignment Handling: Gear couplings are capable of handling higher levels of misalignment, especially angular misalignment.- Load Capacity: Gear couplings are robust and can transmit high torque and handle heavy loads similar to flange couplings.- Complexity: Gear couplings have a more intricate design compared to flange couplings, which may result in higher manufacturing costs.3. Disc Couplings:Misalignment Handling: Disc couplings can accommodate moderate misalignment, but they are not as effective as flexible couplings in this aspect.- Torsional Stiffness: Disc couplings offer high torsional stiffness, making them suitable for precise motion control applications.- Temperature Resistance: Disc couplings can withstand higher operating temperatures compared to some other coupling types.4. Fluid Couplings:Slip Capability: Fluid couplings provide slip between input and output, allowing for smoother starts and reduced shock loads during acceleration.- Efficiency: Fluid couplings may introduce power losses due to fluid shear, resulting in lower efficiency compared to some other coupling types.In summary, flange couplings are ideal for applications requiring high torque transmission and rigid shaft connections. They are commonly used in industrial machinery, pumps, and compressors. However, for applications with misalignment issues, vibration concerns, or the need for torsional flexibility, other coupling types like flexible couplings or gear couplings might be more suitable. The choice of coupling depends on factors such as the specific application, misalignment, load requirements, and the desired level of vibration isolation or damping needed in the system.

China Hot selling Nhf190 Hydraulic Safety Coupling with Flange  flange couplingChina Hot selling Nhf190 Hydraulic Safety Coupling with Flange  flange coupling
editor by CX 2024-04-17

China Professional Large Torsional Stiffness Coupling Shaft to Shaft Coupler Flange Disk Flexible Coupling

Product Description

Product Description:
Coupling is used to link the 2 different organizations shaft (driving shaft and driven shaft) to rotate to common transmission torque of mechanical parts.The overloaded power transmission at high speed, some coupling and buffer, vibration and enhance the role of shaft system dynamic performance.Coupling consists of 2 parts, respectively, and the driving shaft and driven shaft connection.

Brand SHAC
Raw material Aluminum
Inner Diameter 4-60MM
Length 25-140MM
Model number JM1,JM2,JDM,JM-T,JH,TM1/TM2/TM3/TM4,JB,JG,JT
Packing Plastic bag+inner box.According to customer’s request
Sample Free sample and catalogue available
Certification ISO 9001 , ISO 14001 , ISO 14000
Application CNC machines, medical and food machinery, fitness machinery, packaging machinery, printing machinery, and other machinery supporting equipment. 

Detailed Photos

 

 

Company Profile

 

Certifications

Our Advantages

 

Service:
1,Our Team:
We have experienced and qualified team of marketing and sales representatives to serve our valued customers with the finest products and unsurpassed service.And have professional engineers team to assessment and development the new precision products,and make the OEM customized more easily,experienced QC team to test the products quaity ensure the goods quality before delivery out.
2,Our products:
Quality is the life .We use only the best quality material to ensure the precision of our
Product.All products we sold out are strictly selected and tested by our QC department.
3,Payment:
We accept payment via TT (Bank transfer), L/C,Western Union.
4,Shipping method:
Including DHL, UPS, TNT, FEDEX,EMS, Airfreight and by Sea,as customer required.

To get sample or price list of linear gudies,ball screw, please contact us.

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

Standard Sizes and Specifications of Flexible Flange Couplings

Flexible flange couplings come in various sizes and specifications to accommodate different applications and torque requirements. The specific sizes and specifications may vary depending on the manufacturer and the intended use. However, there are some common standard sizes and specifications available in the market:

  • Coupling Size: Flexible flange couplings are available in a range of sizes, typically measured in millimeters (mm) or inches (in). Common sizes include diameters ranging from a few millimeters to several hundred millimeters, catering to different shaft diameters.
  • Torque Capacity: The torque capacity of flexible flange couplings can vary widely. Couplings with higher torque capacities are used in heavy-duty applications, while those with lower torque capacities are suitable for smaller, less demanding systems.
  • Material: Flexible flange couplings can be made from various materials, including steel, aluminum, and stainless steel. The choice of material depends on factors such as the application environment, torque requirements, and the need for corrosion resistance.
  • Number of Flanges: Flexible flange couplings typically have two flanges to connect two shafts. However, some designs may have more flanges to provide additional stability and alignment support.
  • Flexibility: The flexibility of the coupling is crucial for accommodating misalignment. The amount of angular, axial, and parallel misalignment that the coupling can handle should be considered during the selection process.
  • Operating Temperature: The temperature range within which the coupling can operate effectively should be specified. High-temperature applications may require couplings with special materials or heat-resistant designs.
  • Speed Rating: Flexible flange couplings are rated for specific rotational speeds. It’s essential to ensure that the selected coupling can handle the required speed without causing vibration or premature wear.
  • Backlash: Some couplings are designed to have minimal or zero backlash, which is crucial for applications requiring precise motion transfer, while others may allow for some level of backlash.
  • Installation Method: The method of installation can vary between different flexible flange coupling designs. Some may require set screws or clamping elements, while others may have keyways or other attachment methods.

It’s important to consult the manufacturer’s datasheets and technical specifications to find the exact sizes and specifications of flexible flange couplings available from different suppliers. Additionally, considering the specific requirements of the application and seeking expert advice can help in selecting the right flexible flange coupling for optimal performance and longevity in the mechanical power transmission system.

flexible flange coupling

Types of Flexible Flange Couplings in Industrial Applications

Flexible flange couplings come in various designs and configurations to suit different industrial applications. Some of the commonly used types include:

  • 1. Diaphragm Couplings: Diaphragm couplings consist of two flanges with a thin metal diaphragm in between. The diaphragm is designed to flex and move with minimal deformation, allowing for high torsional stiffness and excellent misalignment compensation. They are commonly used in high-speed and high-precision applications, such as pumps, compressors, and servo systems.
  • 2. Disc Couplings: Disc couplings use a series of stainless steel or metallic discs stacked alternately to create flexibility. These couplings can handle high torque, have good misalignment capabilities, and provide excellent vibration damping. They are suitable for applications that require high torque transmission, such as industrial machinery and power generation equipment.
  • 3. Grid Couplings: Grid couplings feature a flexible grid element made of spring steel or elastomeric material between the flanges. The grid provides flexibility while maintaining high torsional rigidity. These couplings are widely used in industries like material handling, conveyors, and pumps.
  • 4. Elastomeric Couplings: Elastomeric couplings use a rubber or elastomeric material as the flexible element. They are highly efficient in dampening vibrations and can accommodate misalignment. Elastomeric couplings find applications in various industries, including HVAC systems, marine equipment, and conveyor systems.
  • 5. Tyre Couplings: Tyre couplings have a flexible tyre-like element made of rubber between the flanges. They offer good shock absorption, compensate for misalignment, and reduce vibrations. These couplings are commonly used in heavy-duty applications, such as mining equipment and steel rolling mills.
  • 6. Oldham Couplings: Oldham couplings use three discs – two outer discs with radial slots and an intermediate disc with perpendicular slots. The intermediate disc slides between the outer discs, providing flexibility and misalignment compensation. They are ideal for transmitting torque between shafts with limited parallel misalignment and are used in printing machines, textile equipment, and robotics.

Conclusion: The selection of a specific type of flexible flange coupling depends on the requirements of the industrial application, including the amount of misalignment, torque transmission, speed, and the need for vibration dampening. Each type of coupling offers unique advantages, making them suitable for various industrial setups where reliable and flexible power transmission is essential.

China Professional Large Torsional Stiffness Coupling Shaft to Shaft Coupler Flange Disk Flexible Coupling  China Professional Large Torsional Stiffness Coupling Shaft to Shaft Coupler Flange Disk Flexible Coupling
editor by CX 2024-04-17

China Best Sales DN100 Pn16 Ductile Iron Ggg50 Coupling Dismantling Joint Carbon Steel Ductile Iron Pipe Fitting Flange Adaptor China Factory Pipe Universal Coupling flange coupling

Product Description

DN100 PN16 Ductile Iron GGG50 Coupling Dismantling Joint Carbon Steel Ductile Iron Pipe Fitting Flange Adaptor  China Factory Pipe Universal Coupling

Carbon Steel Dismantling Joint Flanged PN16 Technical Specification:

Nominal Diameter: DN80 to DN2000

Nominal Pressure: PN6/10/16

Flange Connection: EN1092, ANSI B16.5

Inspection and Test: EN12266-1/API 598

Carbon Steel Dismantling Joint Flanged PN16 Material List

1. Body: Ductile iron/carbon steel

2. Sealing: EPDM

3. Gland: carbon steel/stainless steel

4. Stud: carbon steel/stainless steel

5. Nut: carbon steel/stainless steel

6. Gasket: carbon steel/stainless steel

Some Ending Clients

Related Products


 

MOQ

We do not have any MOQ for this valve, 1 set order is also can be accepted.

Delivery

It depends on the order quantity, but not more than 35-40days after received payment
 

By sea LCL shipment
  Container shipment
By air By air cargo or courier for sample

Payment way

30% deposit, the balance will be paid before loading.

Hydraulic testing

We promise 100% hydraulic testing before exporting, with a testing machine and testing bowl(for big size).

Body testing: 1.5* design pressure

Sealing testing 1.1* design pressure

We can provide a 12-month warranty after the shipping date.

 

Packing way

Plywood case in exporting standard, bubble plastic packing inside

For large size, we will use steel pallet with bubble plastic packing outside

Our Overseas Exhibition 

Or you can visit our website: davanflowtek

   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Impact of Flange Coupling on Noise and Vibration in a Mechanical System

Flange couplings play a significant role in the overall noise and vibration levels of a mechanical system. The type of flange coupling used and its design characteristics can have varying effects on the system’s noise and vibration. Let’s explore how flange couplings impact noise and vibration in a mechanical system:

1. Rigid Flange Couplings:

Rigid flange couplings, being solid and inflexible connections, are generally considered to be more rigid than flexible couplings. As a result, they can transmit vibrations more directly between the connected shafts and the rest of the system. The lack of misalignment compensation can lead to higher stress on the bearings and other components, contributing to increased vibration levels.

However, rigid flange couplings are also less likely to introduce any additional sources of vibration due to their simple and solid construction. If the system is well-aligned and requires no misalignment compensation, rigid flange couplings can provide a stable and reliable connection.

2. Flexible Flange Couplings:

Flexible flange couplings are designed to dampen vibrations and shocks in the system. The flexibility of these couplings allows them to absorb and minimize the transmission of vibrations between the connected shafts and the rest of the system. As a result, flexible flange couplings can reduce overall vibration levels and provide a smoother and quieter operation.

Additionally, the misalignment compensation capability of flexible flange couplings helps to reduce stress on the bearings and other components. By accommodating misalignment, these couplings prevent the system from experiencing excessive vibrations that can lead to premature wear and failures.

Overall Impact:

The choice of flange coupling design will significantly influence the noise and vibration levels in the mechanical system. In applications where precise alignment is crucial, rigid flange couplings may be preferred despite potentially higher vibration levels. On the other hand, flexible flange couplings are ideal for systems where misalignment is expected or where vibration dampening is a priority.

It’s important to consider the specific requirements of the application when selecting a flange coupling. Factors such as torque capacity, operating conditions, alignment needs, and desired noise and vibration levels should all be taken into account. Proper installation and maintenance of the chosen flange coupling can also impact its performance in reducing noise and vibration levels in the mechanical system.

flange coupling

How do Flange Couplings Handle Shaft Misalignment in Rotating Equipment?

Flange couplings are designed to handle certain degrees of shaft misalignment in rotating equipment. The flexibility of flange couplings allows them to accommodate minor misalignments between the connected shafts without causing significant stress or damage. The ability to handle shaft misalignment is one of the key advantages of using flange couplings in various industrial applications. Here’s how flange couplings handle shaft misalignment:

1. Radial Misalignment: Flange couplings can handle radial misalignment, which is the offset between the rotational axis of two connected shafts. This misalignment can be in the form of parallel misalignment or angular misalignment. Flange couplings with flexible elements, such as elastomeric inserts or diaphragms, can absorb and compensate for radial misalignment, ensuring smooth power transmission between the shafts.

2. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the rotational axis of the shafts. While some flange couplings may have limited axial misalignment capabilities, others may not be designed to accommodate significant axial movements. Engineers must consider the specific requirements of the application to ensure that the selected flange coupling can handle the anticipated axial misalignment.

3. Angular Misalignment: Angular misalignment refers to the angle between the rotational axes of the two shafts. Flange couplings with flexible elements can handle a certain degree of angular misalignment by flexing and adjusting to the changing angle. However, excessive angular misalignment can lead to increased wear and reduced coupling life, so it’s essential to keep the misalignment within acceptable limits.

4. Rigid Couplings vs. Flexible Couplings: Rigid couplings, such as sleeve couplings or clamp-style couplings, are not capable of handling misalignment and require precise alignment during installation. On the other hand, flexible flange couplings can tolerate misalignment, making them more forgiving and easier to install in applications where perfect alignment is challenging to achieve.

It is important to note that while flange couplings can handle certain degrees of misalignment, excessive or sustained misalignment can lead to premature wear, reduced coupling life, and potential equipment damage. Therefore, proper alignment during installation and regular maintenance checks are essential to ensure the optimal performance and longevity of flange couplings in rotating equipment.

flange coupling

What are the Maintenance Requirements for Flange Couplings?

Flange couplings require regular maintenance to ensure optimal performance and longevity. Proper maintenance can help prevent unexpected failures and downtime in the machinery or equipment. Here are the key maintenance requirements for flange couplings:

1. Inspection: Regularly inspect the flange coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, or any deformations in the flange and bolt holes. Ensure that the coupling is properly aligned with the shafts.2. Lubrication: Lubricate the flange coupling as per the manufacturer’s recommendations. Proper lubrication helps reduce friction and wear between the mating surfaces of the flanges, bolts, and nuts. Use the right type of lubricant that is compatible with the coupling material.3. Bolt Torque Check: Check the bolt torque regularly to ensure that the flange coupling is securely fastened. Loose bolts can lead to misalignment and coupling failure. Follow the recommended torque values provided by the manufacturer.4. Alignment: Maintain proper shaft alignment to prevent excessive forces on the flange coupling. Misalignment can cause uneven load distribution and accelerated wear on the coupling components.5. Environmental Protection: If the flange coupling is exposed to harsh or corrosive environments, take necessary measures to protect it. Consider using protective coatings or seals to prevent corrosion and damage.6. Regular Servicing: Schedule regular servicing of the machinery or equipment, including the flange coupling. This allows for a thorough inspection and timely replacement of worn-out or damaged components.7. Replacement of Worn Parts: When signs of wear or damage are detected during inspections, replace the worn or damaged parts promptly. Delaying the replacement can lead to further damage and compromise the performance of the coupling.8. Follow Manufacturer’s Guidelines: Always follow the maintenance guidelines provided by the flange coupling manufacturer. They may have specific recommendations based on the design and material of the coupling. Proper maintenance and regular checks can extend the life of the flange coupling and contribute to the overall reliability and efficiency of the connected machinery. It is essential to create a maintenance schedule and adhere to it diligently to ensure the smooth operation of the flange coupling and the entire mechanical system.

China Best Sales DN100 Pn16 Ductile Iron Ggg50 Coupling Dismantling Joint Carbon Steel Ductile Iron Pipe Fitting Flange Adaptor China Factory Pipe Universal Coupling  flange couplingChina Best Sales DN100 Pn16 Ductile Iron Ggg50 Coupling Dismantling Joint Carbon Steel Ductile Iron Pipe Fitting Flange Adaptor China Factory Pipe Universal Coupling  flange coupling
editor by CX 2024-04-17

China high quality Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Contribution of Flexible Flange Couplings to Noise Reduction and Smooth Operation

Flexible flange couplings play a crucial role in reducing noise and ensuring smooth operation in mechanical power transmission systems. They achieve this through the following mechanisms:

  1. Vibration Damping: One of the primary functions of flexible flange couplings is to dampen vibrations that occur during operation. These couplings utilize materials with inherent damping properties, such as elastomers, to absorb and dissipate vibrations generated by rotating machinery. By reducing vibrations, flexible flange couplings help minimize noise and prevent potential resonance issues that can lead to equipment failure or increased wear.
  2. Misalignment Compensation: Flexible flange couplings are designed to accommodate both angular and axial misalignments between connected shafts. When shafts are misaligned, it can result in uneven forces and vibrations that contribute to noise and mechanical stress. By allowing some degree of misalignment, these couplings prevent rigid transmission of vibrations and reduce the impact of misalignment on connected machinery, resulting in smoother operation.
  3. Shock Absorption: In industrial applications where machinery encounters sudden shocks or impact loads, flexible flange couplings act as shock absorbers. The elastomeric or flexible elements of the couplings can absorb and dissipate energy from shocks, preventing it from propagating through the system. This shock absorption capability helps maintain stable and quieter operation, protecting components from damage caused by sudden loads.
  4. Reduced Backlash: Backlash refers to the slight play or movement that can occur in couplings when the rotational direction changes. Flexible flange couplings often exhibit minimal backlash due to their design and materials. This characteristic results in smoother engagement between the shafts during reversals, reducing noise and preventing jerky movements that could impact equipment performance.
  5. Smooth Torque Transmission: Flexible flange couplings efficiently transmit torque from one shaft to another while allowing for a certain degree of flexibility. This smooth transmission of torque prevents sudden torque spikes that could lead to noise generation and mechanical stresses.

By combining these features, flexible flange couplings contribute significantly to noise reduction and ensuring smooth and reliable operation of rotating machinery. Their ability to absorb vibrations, compensate for misalignments, and dampen shocks makes them essential components in various industrial applications, where noise reduction and smooth operation are critical for performance and safety.

flexible flange coupling

Where to Find Reputable Suppliers or Manufacturers of Flexible Flange Couplings for Your Specific Power Transmission Needs?

When looking for reputable suppliers or manufacturers of flexible flange couplings, consider the following steps:

  1. Online Research: Start by conducting online research to identify companies that specialize in power transmission components, including flexible flange couplings. Look for manufacturers with a strong reputation, positive customer reviews, and a history of delivering high-quality products.
  2. Industry Directories: Industry-specific directories and trade publications often feature listings of suppliers and manufacturers. These directories can be a valuable resource to find companies that offer flexible flange couplings tailored to your industry’s needs.
  3. Trade Shows and Exhibitions: Attend trade shows and exhibitions related to power transmission, where you can meet suppliers in person, examine product samples, and discuss your specific requirements.
  4. Referrals and Recommendations: Seek referrals or recommendations from industry peers, colleagues, or professionals who have experience with flexible flange couplings. Their insights can lead you to reliable suppliers.
  5. Supplier Websites: Visit the websites of potential suppliers to gather detailed information about their products, manufacturing processes, certifications, and capabilities. Look for suppliers with a comprehensive product range and customization options.
  6. Quality and Certifications: Verify if the supplier follows industry standards and has relevant certifications such as ISO, ASME, or API. These certifications demonstrate their commitment to quality and compliance.
  7. Technical Support: Evaluate the technical support and customer service provided by the supplier. A reliable supplier should be responsive to your queries, offer guidance on selecting the right coupling, and provide after-sales support.
  8. Sample and Testing: Request samples of the flexible flange couplings to evaluate their quality and suitability for your application. Some suppliers may also offer testing services to validate the performance of their products.
  9. Price and Delivery: Obtain quotes from multiple suppliers to compare prices, delivery times, and shipping costs. However, prioritize quality and reliability over cost alone.

By following these steps, you can find reputable suppliers or manufacturers that can meet your specific power transmission needs with high-quality flexible flange couplings. Remember to conduct thorough research and consider factors beyond price to ensure you choose a supplier that can provide durable and efficient couplings for your application.

flexible flange coupling

Selecting the Right Flexible Flange Coupling for Specific Machinery or Equipment

Choosing the appropriate flexible flange coupling involves considering several factors to ensure optimal performance and longevity. Here are the key steps to guide the selection process:

  1. Load and Torque Requirements: Determine the maximum torque and load that the coupling will experience during operation. Select a coupling that can handle these loads without exceeding its rated capacity.
  2. Misalignment Compensation: Assess the expected misalignment between the shafts. Different coupling types have varying degrees of misalignment capabilities, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the specific misalignment in your application.
  3. Speed: Consider the rotational speed of the machinery or equipment. High-speed applications may require couplings with good balance and vibration-damping properties to avoid resonance and ensure smooth operation.
  4. Vibration Damping: Evaluate the level of vibration present in the system. If vibration damping is critical, elastomeric couplings or disc couplings may be more suitable choices.
  5. Space Constraints: Take into account the available space for the coupling. Some couplings have a compact design, making them suitable for tight spaces.
  6. Environmental Factors: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a coupling material that can withstand these conditions without corrosion or degradation.
  7. Serviceability: Assess the ease of installation and maintenance. Some couplings allow for easy replacement without disassembling the connected machinery.
  8. Cost: Compare the cost of different coupling options and balance it with the required performance and reliability for your application.

Conclusion: Properly selecting a flexible flange coupling involves understanding the specific requirements of the machinery or equipment, as well as the operating conditions it will be subjected to. By considering factors such as load, misalignment, speed, and environmental conditions, you can make an informed decision and choose the right coupling that ensures efficient power transmission and minimizes the risk of premature failure.

China high quality Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China high quality Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-04-16

China Hot selling Good Sale Factory Direct Sale Universal Flexible Flange Coupling flange coupling

Product Description

Product Description

 

      The flange adaptor is mainly composed of body, gland,sealing ring and bolts. The body and gland are usually made of carbon steel or ductile iron, and the sealing ring is made of CHINAMFG sealing, which has good water tightness and air tightness.Supporting the use of expansion joints and butterfly valve, the flange surface between the axial extension and radial angular displacement, position and angle to compensate the error of pipe flange, eliminate the internal stress caused by pipeline pipeline temperature, bring great convenience to the installation and maintenance of pipelines.

 

Product Parameters

 

 

time description material quantity
1 end  ring stainless  steel 1
2 gasket EPDM 1
3 bolt stainless  steel N
4 body stainless  steel 1
5 plastic cap plastic N

 

Connection for pipes in material ductile iron,steel,PVC,AC etc.
Working pressure  PN10/16/25
Maximum temperature -10ºCto +70ºC
Application   Suitable for portable water, neutral liquidsand sewage

 

feature

wide tolerance  range
corrosion  resistant  construction
angular deflection ±4°
 

DN(mm) RANGE(mm) LENGTH(mm) D(mm)              BOLT
SIZE  QTY
50 59-72 75 165 M12×130 2
65 72-85 75 185 2
80 88-103 76 185 4
1/8822 0571 110 510
400 400-429 110 580
400 410-436 110 580
400 418-435 110 580
400 425-442 110 580
450 455-472 115 640 10
450 476-493 115 640
500 500-432 120 690
500 527-544 120 690
600 600-630 130 820
600 630-647 130 820

 

Special size and length can also be customized.

If you want to know more details of our products,please click here to contact us 

advantages

1. Installation and dismantling are very convenient.
2. Low price
3. Has a high integrity.

 

 

products application

Packaging & Shipping

 

Packaging

Inner:plastic film packaging.

Outer:standard export wooden case or pallet packaging. 

Shipping

1.Fed Ex/DHL/UPS/TNT for sample.Door-to-Door.

2.By Air or By Sea for batch goods for LCL/FCL;Airport /Port receiving.

3.Customers specified freight forwarders or negotiable shipping methods!

4.Delivery Time: a.in stock:immediately b.sample:2 days c.OEM/ODM:3-15 DAYS.

 

Company Profile

 

     HangZhou Ruixuan pipeline equipment factory was founded in 1996.It  is an excellent  enterprise  specializing  in manufacturing  and selling pipe fittings.It’s located  in Xicun village ,HangZhou  city,ZheJiang province ,the concentrated  area  of pipeline equipment industry  in China.The company factory  is located  in Xicun town pipeline equipment industrial park.It covered an area of20000  square  meters.

        At present, the company has the production capacity of pipeline equipment with a maximum diameter of 4000mm, and its main products are: Steel expansion joint, flexible waterproof sleeve, large diameter flange, double flange force transfer expansion joint, large deflection loose sleeve compensation joint, spherical compensation joint, sleeve compensator, bellows compensator, non-metallic compensator, rubber expansion joint, DC medium no thrust sleeve compensator, flexible expansion pipe and other pipeline equipment. The annual production capacity is 30 million sets.

      The flexible telescopic pipe equipment is mainly used in the pipeline crossing different geological structures under different conditions and the application of pipe installation drop, reduce or avoid the impact of geological settlement and crustal activity on the pipeline, so that the construction unit can save more than 50% of the cost when purchasing the equipment. The rubber expansion joint series products of the company, the maximum production diameter of 3600mm, have been applied in millions of units of thermal power projects in China for many times, and have been praised by the users.

      The company passed ISO9001:2008 quality management system certification in 2009 and ISO14000:2004 environmental management system certification in 2009. The company has a strict quality control system, standard production process, standard factory inspection hand section, to ensure that every product meets the national standards and customer requirements.

     Business philosophy: responsible production of products, return the trust of customers; To build a community with a sense of belonging and appreciate employees’ contributions; Make a contribution to the society of enterprises, give back to the good times. HangZhou Ruixuan pipeline equipment factory is willing to work with friends from all walks of life hand in hand, mutual support, create a better future!
 

Certifications

 

 

exhibition

 

FAQ

 

 

Q: Can you make the product as per client’s requirement?
A: Yes, we can make it with your exact requirement

 

Q: What are your payment terms?
A: T/T (30% as desposit, the rest 70% will be paid before delivery), L/C at sight

 

Q: Where is your nearest loading port?
A: ZheJiang , HangZhou or ZheJiang , China.

 

Q: How can you guarantee the quality or any warranty?
A: If any quality problems during use, all the products can be returned or according to consumer’s requests

 

Q: Do you accept small quantity order?
A: Of course we do.

 

Q: And what is your shipment and delivery time?
A: By sea or air. Normally 7 to 14 Days for delivery, according to your order quantity.

 

Pls send your detailed needs in the below and get a quick reply!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Flange Couplings for Motor-to-Shaft and Shaft-to-Shaft Connections

Flange couplings are versatile components that can be used for both motor-to-shaft and shaft-to-shaft connections in a wide range of mechanical systems. Their design and features make them suitable for various applications:

1. Motor-to-Shaft Connections: Flange couplings are commonly used to connect electric motors to driven equipment, such as pumps, fans, compressors, and conveyors. In motor-to-shaft connections, the flange coupling is mounted on the motor shaft and connected to the input shaft of the driven equipment. This configuration ensures efficient power transmission from the motor to the driven component.

2. Shaft-to-Shaft Connections: Flange couplings are also employed for shaft-to-shaft connections, where two shafts need to be linked together. This could involve connecting two separate pieces of machinery or extending the length of an existing shaft. Flange couplings allow for the secure and precise alignment of the two shafts, ensuring smooth rotation and power transmission between them.

Flange couplings are available in various designs, such as rigid flange couplings, flexible flange couplings, and floating shaft couplings. Rigid flange couplings offer a more rigid connection, ideal for applications where shaft misalignment is minimal. Flexible flange couplings, on the other hand, can accommodate some degree of misalignment and provide vibration dampening, making them suitable for systems with dynamic conditions or slight misalignments.

When selecting a flange coupling for a specific connection, factors such as the required torque capacity, shaft sizes, misalignment tolerance, and operating conditions need to be considered. Proper installation and alignment are crucial to ensure the optimal performance and longevity of the flange coupling in both motor-to-shaft and shaft-to-shaft connections.

In summary, flange couplings are versatile components that can be effectively used for both motor-to-shaft and shaft-to-shaft connections. Their ability to provide secure and efficient power transmission makes them a valuable choice in various industries and mechanical systems.

flange coupling

Can Flange Couplings Be Used in Food Processing and Pharmaceutical Industries?

Yes, flange couplings can be used in food processing and pharmaceutical industries, provided they meet certain requirements and standards to ensure hygiene and product safety. These industries have stringent regulations and guidelines to prevent contamination and maintain the quality and purity of their products. When selecting flange couplings for such applications, several considerations must be taken into account:

  • Material Selection: The flange coupling material must be food-grade or pharmaceutical-grade and comply with industry-specific regulations. Stainless steel, particularly austenitic grades like 316L, is commonly used due to its excellent corrosion resistance and ease of cleaning.
  • Hygienic Design: Flange couplings for these industries should have a hygienic design that minimizes crevices, dead spaces, and surface roughness where bacteria or contaminants could accumulate. Smooth surfaces and seamless construction help facilitate thorough cleaning and sterilization.
  • Sealing and Lubrication: Proper sealing is essential to prevent any potential leaks or ingress of contaminants. Food-grade or pharmaceutical-grade lubricants should be used to ensure that there is no risk of contamination from the coupling’s lubrication.
  • Certifications and Compliance: Flange couplings intended for use in food processing and pharmaceutical industries should have relevant certifications, such as FDA (U.S. Food and Drug Administration) approval, EU regulations (e.g., EC No. 1935/2004), and compliance with industry standards like 3-A Sanitary Standards.
  • Cleanability: Flange couplings should be designed for easy disassembly and cleaning to maintain the required hygiene standards. This may involve quick-release or tool-less designs that allow for frequent inspection and cleaning without impeding production processes.
  • Resistant to Corrosive Cleaning Agents: In food processing and pharmaceutical industries, aggressive cleaning agents may be used. The flange coupling material should be resistant to these substances to avoid degradation and maintain the coupling’s integrity over time.

By meeting these criteria, flange couplings can be safely used in food processing and pharmaceutical applications without compromising product quality or safety. It is crucial to work with reputable manufacturers or suppliers who understand the specific requirements of these industries and can provide couplings that adhere to the necessary standards.

flange coupling

Can Flange Couplings Accommodate High Torque and High-Speed Applications?

Yes, flange couplings are designed to accommodate both high torque and high-speed applications. They are capable of transmitting significant amounts of torque between shafts while maintaining stable and efficient power transmission. The ability to handle high torque and high-speed applications depends on various factors, including the design, material, and size of the flange coupling.

1. Design: Flange couplings are available in different designs, such as rigid flange couplings and flexible flange couplings. Rigid flange couplings are more suitable for applications that require precise shaft alignment and minimal misalignment. On the other hand, flexible flange couplings can accommodate slight misalignments and are suitable for applications where shock or vibration may occur. The design of the coupling is crucial in determining its torque and speed capabilities.

2. Material: Flange couplings are manufactured from various materials, including steel, stainless steel, aluminum, and other alloys. The material selection is essential in determining the coupling’s strength, durability, and resistance to wear and fatigue. High-quality materials are used in flange couplings for high torque and high-speed applications to ensure their reliability and performance.

3. Size and Dimensions: The size and dimensions of the flange coupling play a significant role in determining its torque and speed ratings. Larger flange couplings with increased diameter and thickness can handle higher torque and speed compared to smaller couplings. It is essential to choose the appropriate size of the coupling based on the application’s torque and speed requirements.

4. Surface Finish: The surface finish of the flange coupling is critical, especially in high-speed applications. A smooth surface finish reduces friction and wear between the mating surfaces of the flanges, bolts, and nuts, thereby improving the overall efficiency of the coupling.

5. Lubrication: Proper lubrication is essential for flange couplings in high-speed and high-torque applications. Lubricants help reduce friction and wear, dissipate heat, and prevent premature failure of the coupling components.

6. Manufacturer’s Recommendations: It is crucial to follow the manufacturer’s recommendations and guidelines regarding the maximum torque and speed ratings of the flange coupling. Exceeding the recommended limits can lead to coupling failure and potential damage to the connected equipment.

In conclusion, flange couplings can be effectively used in high torque and high-speed applications when selected and maintained properly. Choosing the right design, material, size, and adhering to the manufacturer’s guidelines ensures that the flange coupling can handle the required torque and rotational speed efficiently and reliably.

China Hot selling Good Sale Factory Direct Sale Universal Flexible Flange Coupling  flange couplingChina Hot selling Good Sale Factory Direct Sale Universal Flexible Flange Coupling  flange coupling
editor by CX 2024-04-16

China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Flexible Flange Couplings for Pumps, Compressors, and Marine Propulsion Systems

Yes, flexible flange couplings are suitable for use in pumps, compressors, and marine propulsion systems. These couplings offer several advantages that make them well-suited for such applications:

  • Misalignment Tolerance: Pumps, compressors, and marine propulsion systems often experience misalignments due to thermal expansion, vibration, or other factors. Flexible flange couplings can accommodate both angular and axial misalignments, ensuring smooth operation and reducing stress on the connected equipment.
  • Vibration Damping: These coupling types are designed to dampen vibrations, which is crucial in pump and compressor applications where excessive vibration can lead to equipment damage and premature wear. The vibration damping properties help improve the overall system’s reliability and reduce maintenance requirements.
  • High Torque Transmission: Pumps, compressors, and marine propulsion systems often require high torque transmission to handle heavy loads and provide efficient power transfer. Flexible flange couplings are capable of transmitting high torques, making them suitable for these demanding applications.
  • Electrical Isolation: In some cases, electrical isolation between shafts is necessary to prevent the transfer of electrical currents or static electricity. Flexible flange couplings made from insulating materials can provide this isolation, ensuring safe and efficient operation in certain pump and compressor applications.
  • Corrosion Resistance: Marine propulsion systems are exposed to harsh environments with high humidity and saltwater exposure. Flexible flange couplings made from materials such as stainless steel or corrosion-resistant alloys can withstand these conditions, offering extended service life and reliable performance.
  • Easy Installation and Maintenance: Flexible flange couplings are relatively easy to install and require minimal maintenance, making them attractive choices for various industrial applications, including pumps, compressors, and marine propulsion systems.
  • Compact Design: Space may be limited in pumps, compressors, and marine propulsion systems. Flexible flange couplings have a compact design, which helps in integrating them into the equipment without significant modifications.

Overall, flexible flange couplings are versatile and can be customized to suit specific requirements, making them well-suited for use in pumps, compressors, and marine propulsion systems. However, it’s essential to consider factors such as torque capacity, material compatibility, operating conditions, and system requirements to select the most appropriate coupling for each application.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China Best Sales Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2024-04-16

China Hot selling Heavy Duty Flange Type C Stainless Steel 316 Quick Connect Coupling flange coupling

Product Description

Material stainless steel 304 316
Standard NPT,BSP,BSPT
Size 1/2″,3/4″,1″,11/4″,11/2″,2″,21/2″,3″,4″            
Applications Suitable for Pipe lines connect of water, steam, air, gas, oil and so on.
Buyer’s drawings or designs are available.
Gasket Nitrile butadiene, silicone, fluorine rubber        

 

Q: Are you trading company or manufacturer ?
A: We are factory.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to
quantity.

Q:What is the payment team?
A:L/C at sight ,T/T etc.

Q: May I visit your factory?
A:Sure,welcome any time.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Torque and Speed Ratings of Flange Couplings

Flange couplings are available in various sizes and designs to accommodate a wide range of torque and rotational speed requirements. The torque and speed ratings of flange couplings depend on several factors, including their size, material, and design.

Torque Rating:

The torque rating of a flange coupling indicates the maximum amount of torque it can transmit without experiencing failure or damage. It is typically specified in Nm (Newton-meters) or lb-ft (pound-feet). The torque rating varies for different sizes and types of flange couplings. Larger flange couplings generally have higher torque ratings compared to smaller ones.

Speed Rating:

The speed rating of a flange coupling represents the maximum rotational speed at which it can operate reliably without excessive vibration or wear. It is typically expressed in RPM (revolutions per minute). The speed rating is influenced by factors such as the design, material, and balancing of the flange coupling. Higher-speed applications require flange couplings that can handle the increased centrifugal forces and dynamic loads associated with higher RPMs.

Size and Type:

The torque and speed ratings vary for different sizes and types of flange couplings. For example:

  • Smaller flange couplings, such as those used in light-duty applications, may have torque ratings ranging from a few Nm to several hundred Nm, and speed ratings up to a few thousand RPM.
  • Larger flange couplings, used in heavy-duty industrial applications, can have torque ratings exceeding several thousand Nm and speed ratings that may reach tens of thousands of RPM.
  • Flexible flange couplings may have slightly lower torque ratings compared to rigid flange couplings but offer greater misalignment compensation.

Manufacturer Specifications:

It is essential to refer to the manufacturer’s specifications and technical data to determine the specific torque and speed ratings for each size and type of flange coupling. Manufacturers typically provide detailed performance data to help users select the appropriate flange coupling for their specific application.

Application Considerations:

When selecting a flange coupling, it is crucial to consider the torque and speed requirements of the application. The operating conditions, such as load fluctuations and thermal effects, should also be taken into account to ensure the flange coupling’s reliable performance and longevity.

Conclusion:

Flange couplings come in various sizes and designs, each with its own torque and speed ratings. Properly selecting a flange coupling that meets the specific torque and speed requirements of the application is essential to ensure efficient and trouble-free power transmission in mechanical systems.

flange coupling

Flange Couplings and Variable Operating Conditions

Flange couplings are designed to accommodate a wide range of operating conditions and loads, making them versatile and suitable for various applications. The key factors that enable flange couplings to handle variable operating conditions and loads include:

  • Flexible Design: Some flange couplings, such as flexible flange couplings or disc couplings, are designed to have some degree of flexibility. This flexibility allows them to compensate for misalignment between shafts, which is often encountered in real-world applications.
  • Material Selection: Flange couplings are available in different materials to suit specific operating conditions. For example, stainless steel flange couplings are ideal for corrosive environments, while high-strength steel couplings are suitable for heavy-duty applications.
  • Customization: Many flange coupling manufacturers offer customization options to tailor the coupling’s design to meet specific requirements. This may include modifying the coupling’s size, material, or torque capacity.
  • Load Distribution: Flange couplings are designed to distribute loads evenly between the connected shafts. This even distribution of load helps prevent premature wear and reduces stress on the shafts and other connected equipment.
  • High Torque Capacity: Flange couplings are available in various designs, including those suitable for high torque applications. This allows them to handle varying levels of torque without compromising performance.
  • Temperature and Environmental Resistance: Flange couplings made from appropriate materials can withstand a wide range of temperatures and environmental conditions, making them suitable for both indoor and outdoor applications.

It is essential to consider the specific requirements of your application and the potential variations in operating conditions and loads when selecting a flange coupling. This ensures that the chosen coupling can reliably and efficiently transmit power while accommodating any changes in the operating environment.

flange coupling

How Do Flange Couplings Compare to Other Types of Couplings in Terms of Performance?

Flange couplings offer several advantages and disadvantages compared to other types of couplings, and their performance depends on the specific requirements of the application. Here’s a comparison of flange couplings with other common coupling types:

1. Flexible Couplings:Misalignment Handling: Flexible couplings, such as elastomeric or jaw couplings, excel in handling shaft misalignment, both angular and axial. Flange couplings have limited misalignment accommodation compared to flexible couplings.- Vibration Damping: Flexible couplings can absorb and dampen vibrations, reducing the impact on connected equipment. Flange couplings, being rigid, provide less vibration dampening.- Load Capacity: Flange couplings can handle higher torque and loads due to their rigid design, making them suitable for heavy-duty applications. Flexible couplings have a lower torque and load capacity but offer other benefits.2. Gear Couplings:Misalignment Handling: Gear couplings are capable of handling higher levels of misalignment, especially angular misalignment.- Load Capacity: Gear couplings are robust and can transmit high torque and handle heavy loads similar to flange couplings.- Complexity: Gear couplings have a more intricate design compared to flange couplings, which may result in higher manufacturing costs.3. Disc Couplings:Misalignment Handling: Disc couplings can accommodate moderate misalignment, but they are not as effective as flexible couplings in this aspect.- Torsional Stiffness: Disc couplings offer high torsional stiffness, making them suitable for precise motion control applications.- Temperature Resistance: Disc couplings can withstand higher operating temperatures compared to some other coupling types.4. Fluid Couplings:Slip Capability: Fluid couplings provide slip between input and output, allowing for smoother starts and reduced shock loads during acceleration.- Efficiency: Fluid couplings may introduce power losses due to fluid shear, resulting in lower efficiency compared to some other coupling types.In summary, flange couplings are ideal for applications requiring high torque transmission and rigid shaft connections. They are commonly used in industrial machinery, pumps, and compressors. However, for applications with misalignment issues, vibration concerns, or the need for torsional flexibility, other coupling types like flexible couplings or gear couplings might be more suitable. The choice of coupling depends on factors such as the specific application, misalignment, load requirements, and the desired level of vibration isolation or damping needed in the system.

China Hot selling Heavy Duty Flange Type C Stainless Steel 316 Quick Connect Coupling  flange couplingChina Hot selling Heavy Duty Flange Type C Stainless Steel 316 Quick Connect Coupling  flange coupling
editor by CX 2024-04-16

China supplier Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting

Product Description

UNIVERSAL COUPLING

 
APPLICATION

 Universal coupling is also called wide range coupling, tolerance range coupling .
 It can fit most standard pipe materials and therefore dramatically reduces the stocks of dedicated couplings 

 It is suitable for steel , GRP, PVC, PE, Ductile Iron , Cast Iron and Asbestors Cement pipes.
 Size from DN40-DN2000

 
PRESSURE
 PN10, PN16, PN25. Flange according to ISO2531/ EN545,/EN1092
 
MATERIAL

FAQ

1.Q: Are you manufacture or trade company?
A: We are a manufacturer factory and we also have our own exporting license.

2.Q: Can I get free samples?
A: Yes, we can provide you the free samples, but you need to bear their own delivery costs. 

3.Q: Can I have my own Logo on the product?
A: Yes, you can send us your drawing and we can make your logo, but you have to bear their own the cost.

4.Q: Can you produce the products according to my own drawings?
A: Yes, we can produce the products according to your drawings that will be most satisfy you.

5.Q: Can I request to change the form of packaging and transportation?
A: Sure, we’re glad to fulfill your requirement. Yet please understand that extra costs may occur if the form of packaging and transportation are changed.

6.Q: Why trust in us ?
AMore than 20 years in this industry . It makes us professional .Good credit in this market. All of our machines are the assurance of our responsibility.    

7. More questions please feel free to contact us.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Contribution of Flexible Flange Couplings to Noise Reduction and Smooth Operation

Flexible flange couplings play a crucial role in reducing noise and ensuring smooth operation in mechanical power transmission systems. They achieve this through the following mechanisms:

  1. Vibration Damping: One of the primary functions of flexible flange couplings is to dampen vibrations that occur during operation. These couplings utilize materials with inherent damping properties, such as elastomers, to absorb and dissipate vibrations generated by rotating machinery. By reducing vibrations, flexible flange couplings help minimize noise and prevent potential resonance issues that can lead to equipment failure or increased wear.
  2. Misalignment Compensation: Flexible flange couplings are designed to accommodate both angular and axial misalignments between connected shafts. When shafts are misaligned, it can result in uneven forces and vibrations that contribute to noise and mechanical stress. By allowing some degree of misalignment, these couplings prevent rigid transmission of vibrations and reduce the impact of misalignment on connected machinery, resulting in smoother operation.
  3. Shock Absorption: In industrial applications where machinery encounters sudden shocks or impact loads, flexible flange couplings act as shock absorbers. The elastomeric or flexible elements of the couplings can absorb and dissipate energy from shocks, preventing it from propagating through the system. This shock absorption capability helps maintain stable and quieter operation, protecting components from damage caused by sudden loads.
  4. Reduced Backlash: Backlash refers to the slight play or movement that can occur in couplings when the rotational direction changes. Flexible flange couplings often exhibit minimal backlash due to their design and materials. This characteristic results in smoother engagement between the shafts during reversals, reducing noise and preventing jerky movements that could impact equipment performance.
  5. Smooth Torque Transmission: Flexible flange couplings efficiently transmit torque from one shaft to another while allowing for a certain degree of flexibility. This smooth transmission of torque prevents sudden torque spikes that could lead to noise generation and mechanical stresses.

By combining these features, flexible flange couplings contribute significantly to noise reduction and ensuring smooth and reliable operation of rotating machinery. Their ability to absorb vibrations, compensate for misalignments, and dampen shocks makes them essential components in various industrial applications, where noise reduction and smooth operation are critical for performance and safety.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Selecting the Right Flexible Flange Coupling for Specific Machinery or Equipment

Choosing the appropriate flexible flange coupling involves considering several factors to ensure optimal performance and longevity. Here are the key steps to guide the selection process:

  1. Load and Torque Requirements: Determine the maximum torque and load that the coupling will experience during operation. Select a coupling that can handle these loads without exceeding its rated capacity.
  2. Misalignment Compensation: Assess the expected misalignment between the shafts. Different coupling types have varying degrees of misalignment capabilities, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the specific misalignment in your application.
  3. Speed: Consider the rotational speed of the machinery or equipment. High-speed applications may require couplings with good balance and vibration-damping properties to avoid resonance and ensure smooth operation.
  4. Vibration Damping: Evaluate the level of vibration present in the system. If vibration damping is critical, elastomeric couplings or disc couplings may be more suitable choices.
  5. Space Constraints: Take into account the available space for the coupling. Some couplings have a compact design, making them suitable for tight spaces.
  6. Environmental Factors: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a coupling material that can withstand these conditions without corrosion or degradation.
  7. Serviceability: Assess the ease of installation and maintenance. Some couplings allow for easy replacement without disassembling the connected machinery.
  8. Cost: Compare the cost of different coupling options and balance it with the required performance and reliability for your application.

Conclusion: Properly selecting a flexible flange coupling involves understanding the specific requirements of the machinery or equipment, as well as the operating conditions it will be subjected to. By considering factors such as load, misalignment, speed, and environmental conditions, you can make an informed decision and choose the right coupling that ensures efficient power transmission and minimizes the risk of premature failure.

China supplier Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting  China supplier Flexible Universal Range Coupling Flange Adaptor ISO9001 Pipe Fitting
editor by CX 2024-04-15