Tag Archives: flexible flange couplings

China Professional Hl/Lx Pin Bush Coupling Elastic Pin Shaft Flange Coupling Elastic Sleeve Pin Flexible Pin Couplings flange coupling

Product Description

HL/LX Pin Bush Coupling Elastic Pin Shaft Flange Coupling 

Description:

Elastic pin coupling is the use of pin is made into a plurality of non elastic material, in 2 and a half coupling flange holes, through pin to realize 2 coupling, the shaft coupling has the advantages of simple structure, easy fabrication, assembly and disassembly is convenient to replace the elastic element, without moving the 2 coupling.

 

The elastic element (PIN) materials are generally made of nylon 6, with a trace of compensation of 2 axis deviation, elastic work by shear, poor reliability, only for medium speed transmission shafting in very low, not suitable for higher reliability of operation, for example, the drive shaft lifting mechanism of heavy machinery absolutely cannot choose, should not be used for low-speed heavy load and has strong impact and vibration of transmission shaft, the radial and angular shaft offset larger condition and low installation accuracy also should not use, belonging to eliminate specie

Advantages:
Elastic pin coupling has simple and reasonable structure, convenient repair, 2 symmetric interchangeable, long service life, allow the larger axial channeling move, with buffer, shock, abrasion resistance.

Paramters:

Service of HL / LX flexible pin coupling:
1. 12 months warranty period .
2. Free maintenance .  
3. High quality, Lowest price , Fast delivery, Perfect service after sale
4. Chinese CHINAMFG supplier, many years engaged in couplings

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Factors to Consider When Choosing a Flange Coupling for a Specific System

When selecting a flange coupling for a specific system, several factors need to be taken into consideration to ensure optimal performance and reliability. Here are the key factors to consider:

  • 1. Load and Torque Requirements: Determine the maximum load and torque that the flange coupling will experience in the application. This includes both static and dynamic loads. Select a flange coupling that can handle these loads without exceeding its rated capacity.
  • 2. Shaft Diameter: Measure the diameter of the shafts that will be connected by the flange coupling. Ensure that the coupling’s bore size matches the shaft diameter to provide a proper fit and secure connection.
  • 3. Misalignment Tolerance: Consider the amount of misalignment that the system may experience during operation. Flange couplings are available in different designs, and some can accommodate higher levels of misalignment than others. Choose a coupling that can handle the expected misalignment to prevent premature wear and stress on the system.
  • 4. Operating Speed: Determine the rotational speed of the connected equipment. High-speed applications may require precision balancing and careful selection of materials to prevent issues like resonance and excessive vibration.
  • 5. Environmental Conditions: Consider the environmental factors the flange coupling will be exposed to, such as temperature, humidity, dust, and chemicals. Choose a material and coating that can withstand the specific environmental conditions to prevent corrosion and degradation.
  • 6. Space Limitations: Evaluate the available space for installing the flange coupling. Some applications may have limited space for coupling installation, requiring compact designs or custom solutions.
  • 7. Serviceability: Assess the ease of installation and maintenance of the flange coupling. A coupling that is easy to install and service can reduce downtime and maintenance costs.
  • 8. Compatibility: Ensure that the flange coupling is compatible with the equipment and shafts in the system. Consider factors such as keyways, set screws, and other connection methods.
  • 9. Material Selection: Choose the appropriate material for the flange coupling based on factors like load, temperature, and corrosion resistance. Common materials include steel, stainless steel, aluminum, and various alloys.
  • 10. Cost: Compare the cost of different flange coupling options, considering both the initial investment and long-term maintenance expenses. Balance the cost with the desired performance and reliability.

It is essential to consult with coupling manufacturers or industry experts to ensure the flange coupling’s suitability for the specific application. Properly selecting and installing the right flange coupling can contribute to the efficiency, reliability, and longevity of the connected machinery and system.

flange coupling

Flange Couplings in Precision Motion Control Systems

Yes, flange couplings can be used in precision motion control systems, provided they are designed and selected appropriately for the specific application. Precision motion control systems often require high accuracy, repeatability, and minimal backlash. Flange couplings can meet these requirements when certain factors are considered:

1. Backlash: Precision motion control systems require minimal or zero backlash to ensure accurate positioning. Flexible flange couplings with no metal-to-metal contact, such as elastomeric or beam couplings, are preferred for these applications.

2. Rigidity: Flange couplings should have sufficient torsional rigidity to maintain the accuracy of the motion system. Rigid flange couplings made from materials like aluminum or steel can provide higher torsional stiffness.

3. Misalignment Compensation: In precision systems, alignment errors must be minimized. Flexible flange couplings can compensate for minor misalignments between shafts while maintaining precise motion transmission.

4. Low Inertia: Flange couplings with low inertia are desirable as they reduce the overall inertia of the system, enabling faster acceleration and deceleration during motion.

5. Material Selection: The choice of material is critical in precision motion control applications. Materials with high strength-to-weight ratios and minimal deformation under load are preferred.

6. Environmental Factors: Consider the environmental conditions in which the flange coupling will operate. For instance, in vacuum environments or cleanrooms, non-lubricated or special coatings may be necessary.

When selecting a flange coupling for precision motion control systems, it’s essential to consider the specific requirements of the application, including speed, torque, misalignment, and environmental factors. Regular maintenance and periodic checks for wear and misalignment are crucial to ensure the continued performance and accuracy of the motion control system.

flange coupling

How Does a Flange Coupling Protect Connected Equipment from Shock Loads and Vibrations?

A flange coupling plays a crucial role in protecting connected equipment from shock loads and vibrations by absorbing and dampening the impact and oscillations. The design and material properties of flange couplings contribute to their ability to mitigate shock and vibrations effectively. Below are the key factors explaining how flange couplings provide protection:

1. Flexibility: Flexible flange couplings are designed with elastomeric or metallic elements that offer flexibility between the connected shafts. When subjected to shock loads or vibrations, these elements can absorb and dissipate the energy, preventing it from transmitting to the connected equipment. The flexibility allows the coupling to accommodate misalignment and minor shocks, reducing the stress on the system.

2. Damping Properties: Elastomeric elements used in certain flange coupling designs possess inherent damping properties. These materials can absorb and dissipate vibrational energy, reducing resonance and preventing harmful vibrations from being amplified in the system.

3. Misalignment Compensation: Flange couplings with flexible elements can compensate for certain degrees of misalignment between the shafts. Misalignment can lead to additional forces and vibrations in the system, but the coupling’s ability to accommodate this misalignment reduces the impact on the connected equipment.

4. Resilience: Flange couplings made from materials like steel or other alloys have high resilience and can withstand sudden shock loads without permanent deformation. This resilience helps maintain the coupling’s integrity and allows it to continue functioning effectively after exposure to shock events.

5. Friction Damping: Some rigid flange coupling designs incorporate friction damping features. These couplings rely on friction between the mating surfaces to dampen vibrations and prevent resonant frequencies from causing issues in the system.

6. Material Selection: The choice of materials for both flexible and rigid flange couplings is critical in their ability to protect connected equipment from shock loads and vibrations. High-quality materials with appropriate mechanical properties, such as strength and elasticity, enhance the coupling’s ability to withstand shocks and vibrations.

7. Proper Installation: Correct installation and alignment of the flange coupling are essential to ensure it functions as intended. Properly installed couplings can effectively manage shocks and vibrations, while misaligned couplings may experience premature wear and transmit higher forces to the connected equipment.

8. Maintenance: Regular maintenance, including inspection, lubrication, and monitoring, ensures that the flange coupling continues to provide protection against shocks and vibrations throughout its service life.

In summary, flange couplings protect connected equipment from shock loads and vibrations by providing flexibility, damping properties, misalignment compensation, resilience, and friction damping. The selection of suitable materials, proper installation, and regular maintenance further enhance their performance in protecting industrial machinery and equipment from potential damage caused by dynamic forces.

China Professional Hl/Lx Pin Bush Coupling Elastic Pin Shaft Flange Coupling Elastic Sleeve Pin Flexible Pin Couplings  flange couplingChina Professional Hl/Lx Pin Bush Coupling Elastic Pin Shaft Flange Coupling Elastic Sleeve Pin Flexible Pin Couplings  flange coupling
editor by CX 2024-04-15

China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)

Product Description

Product Description

      FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 
     As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.
     Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Technical Date

KASIN No. A d L C1 C2 B F1 F2 n a M t   PartsNo. Max. Torque Max.R.P.M Eccentricity Angularity End-Play
FCL 1/8822 0571 -57152031              Fax: 86~/8822 0571 -57152030
 
Http://kasinchain   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Contribution of Flexible Flange Couplings to Noise Reduction and Smooth Operation

Flexible flange couplings play a crucial role in reducing noise and ensuring smooth operation in mechanical power transmission systems. They achieve this through the following mechanisms:

  1. Vibration Damping: One of the primary functions of flexible flange couplings is to dampen vibrations that occur during operation. These couplings utilize materials with inherent damping properties, such as elastomers, to absorb and dissipate vibrations generated by rotating machinery. By reducing vibrations, flexible flange couplings help minimize noise and prevent potential resonance issues that can lead to equipment failure or increased wear.
  2. Misalignment Compensation: Flexible flange couplings are designed to accommodate both angular and axial misalignments between connected shafts. When shafts are misaligned, it can result in uneven forces and vibrations that contribute to noise and mechanical stress. By allowing some degree of misalignment, these couplings prevent rigid transmission of vibrations and reduce the impact of misalignment on connected machinery, resulting in smoother operation.
  3. Shock Absorption: In industrial applications where machinery encounters sudden shocks or impact loads, flexible flange couplings act as shock absorbers. The elastomeric or flexible elements of the couplings can absorb and dissipate energy from shocks, preventing it from propagating through the system. This shock absorption capability helps maintain stable and quieter operation, protecting components from damage caused by sudden loads.
  4. Reduced Backlash: Backlash refers to the slight play or movement that can occur in couplings when the rotational direction changes. Flexible flange couplings often exhibit minimal backlash due to their design and materials. This characteristic results in smoother engagement between the shafts during reversals, reducing noise and preventing jerky movements that could impact equipment performance.
  5. Smooth Torque Transmission: Flexible flange couplings efficiently transmit torque from one shaft to another while allowing for a certain degree of flexibility. This smooth transmission of torque prevents sudden torque spikes that could lead to noise generation and mechanical stresses.

By combining these features, flexible flange couplings contribute significantly to noise reduction and ensuring smooth and reliable operation of rotating machinery. Their ability to absorb vibrations, compensate for misalignments, and dampen shocks makes them essential components in various industrial applications, where noise reduction and smooth operation are critical for performance and safety.

flexible flange coupling

Flexible Flange Couplings for Pumps, Compressors, and Marine Propulsion Systems

Yes, flexible flange couplings are suitable for use in pumps, compressors, and marine propulsion systems. These couplings offer several advantages that make them well-suited for such applications:

  • Misalignment Tolerance: Pumps, compressors, and marine propulsion systems often experience misalignments due to thermal expansion, vibration, or other factors. Flexible flange couplings can accommodate both angular and axial misalignments, ensuring smooth operation and reducing stress on the connected equipment.
  • Vibration Damping: These coupling types are designed to dampen vibrations, which is crucial in pump and compressor applications where excessive vibration can lead to equipment damage and premature wear. The vibration damping properties help improve the overall system’s reliability and reduce maintenance requirements.
  • High Torque Transmission: Pumps, compressors, and marine propulsion systems often require high torque transmission to handle heavy loads and provide efficient power transfer. Flexible flange couplings are capable of transmitting high torques, making them suitable for these demanding applications.
  • Electrical Isolation: In some cases, electrical isolation between shafts is necessary to prevent the transfer of electrical currents or static electricity. Flexible flange couplings made from insulating materials can provide this isolation, ensuring safe and efficient operation in certain pump and compressor applications.
  • Corrosion Resistance: Marine propulsion systems are exposed to harsh environments with high humidity and saltwater exposure. Flexible flange couplings made from materials such as stainless steel or corrosion-resistant alloys can withstand these conditions, offering extended service life and reliable performance.
  • Easy Installation and Maintenance: Flexible flange couplings are relatively easy to install and require minimal maintenance, making them attractive choices for various industrial applications, including pumps, compressors, and marine propulsion systems.
  • Compact Design: Space may be limited in pumps, compressors, and marine propulsion systems. Flexible flange couplings have a compact design, which helps in integrating them into the equipment without significant modifications.

Overall, flexible flange couplings are versatile and can be customized to suit specific requirements, making them well-suited for use in pumps, compressors, and marine propulsion systems. However, it’s essential to consider factors such as torque capacity, material compatibility, operating conditions, and system requirements to select the most appropriate coupling for each application.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)  China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)
editor by CX 2024-04-10

China Best Sales CHINAMFG Lz Type Flexible Pin & Bush Gear Couplings Flange Cover Connection Torque Coupling

Product Description

LZ Type Flexible Pin Bush Gear Couplings(GB/T 5015-2003)

♦Description
The LZ type flexible pin coupling is made of the outer edge of the 2 half couplings and the inner edge of the outer sleeve to make a semicircular groove with the same radius, and a pin is embedded in the middle pin hole.
When working, the half-coupling of the driving shaft drives the outer sleeve through the pin, and the outer sleeve drives the driven half-coupling to rotate through the pin to transmit torque.

 

Advantage:

1. Low life-cycle costs and long service life

2. Increase productivity

3. Professional and innovative solutions

4. Reduce carbon dioxide emissions

♦Detailed Pictures

♦Product Parameter

Note:
kN.m= Norminal Torque; rpm= Allowable speed of rotation; d1.d2= Diameter of shaft hole;
Y L= Length of shaft hole; kg.m²= Rotational inertia; kg= Mass

Allowable Compensation for Elastic Pin& Bush Gear Couplings

Note: △Y= Radial; △X= Axial; △α= Angular
1. The measuring part of radial compensation is half of the maximum outer circle width of the half coupling.
2. The compensation quantity listed in the table refers to the relative offset of 2 axes caused by installation error, shock, vibration, deformation, temperature change and other factors.
The installation error must be less than the value listed in the table.

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Materials Used in Manufacturing Flexible Flange Couplings and Their Impact on Performance

Flexible flange couplings are commonly manufactured using various materials, each offering specific properties that can impact their performance in mechanical power transmission systems. The choice of material depends on factors such as application requirements, operating conditions, torque and speed demands, and environmental considerations. Some of the commonly used materials and their impact on performance are as follows:

  1. Elastomeric Materials (Rubber, Polyurethane, etc.): Elastomeric materials like rubber and polyurethane are widely used in flexible flange couplings. These materials provide excellent flexibility, which allows them to handle misalignment and dampen vibrations effectively. They can also absorb shocks and reduce transmission of torsional vibrations between shafts, contributing to smoother operation and reduced wear on connected machinery. However, elastomeric couplings may have limitations in high-temperature or aggressive chemical environments.
  2. Metal Alloys (Steel, Stainless Steel, etc.): Metal alloys, such as steel and stainless steel, are preferred when higher torque and load-carrying capacities are required. They offer superior strength and durability, making them suitable for heavy-duty applications. Stainless steel is particularly resistant to corrosion and is often used in harsh or corrosive environments. Metal couplings may not provide as much flexibility as elastomeric ones, but they compensate with higher torque transmission capabilities and increased reliability.
  3. Composite Materials (Fiberglass, Carbon Fiber, etc.): Composite materials are gaining popularity in various industries due to their unique combination of properties. They can offer a balance of flexibility and strength, making them suitable for applications where both misalignment accommodation and high torque transmission are necessary. Composite couplings are often lightweight, which can be advantageous for reducing the overall weight of rotating systems.
  4. Plastics (Nylon, Delrin, etc.): Plastics are sometimes used in less demanding applications where cost-effectiveness and low friction are essential. While they may not provide the same level of performance as elastomeric or metal couplings, they can still serve adequately in specific settings with lower torque and speed requirements.

The choice of material for flexible flange couplings must consider factors such as application-specific needs, environmental conditions, temperature range, chemical exposure, and maintenance requirements. It is essential to select a coupling material that matches the demands of the application to ensure optimal performance, longevity, and reliability.

flexible flange coupling

Comparison of Flexible Flange Couplings with Other Coupling Types

Flexible flange couplings, elastomeric couplings, and beam couplings are all popular choices for transmitting torque and accommodating misalignment in mechanical systems. Each type has its unique features and advantages, making them suitable for various applications. Here’s a comparison of flexible flange couplings with elastomeric and beam couplings:

  1. Flexible Flange Couplings:
    • Design: Flexible flange couplings consist of two flanges with flexible elements (often rubber or polyurethane) connecting them. The flexibility of the coupling allows it to accommodate angular, axial, and parallel misalignments.
    • Misalignment Compensation: Flexible flange couplings can handle moderate to high levels of misalignment, making them suitable for applications where misalignment is expected.
    • Torque Capacity: They generally have a high torque capacity, making them suitable for high-power applications.
    • Backlash: Flexible flange couplings can have minimal backlash, ensuring accurate and precise motion transfer.
    • Performance: They provide damping of vibrations, reducing resonance in the system and minimizing wear on connected components.
    • Installation: Flexible flange couplings are relatively easy to install and require minimal maintenance.
    • Applications: They are commonly used in industrial machinery, power transmission systems, and applications with moderate to high misalignment requirements.
  2. Elastomeric Couplings:
    • Design: Elastomeric couplings use an elastomer (rubber) element to connect two hubs. The elastomer provides flexibility for misalignment compensation.
    • Misalignment Compensation: Elastomeric couplings can handle angular and parallel misalignments but have limited axial misalignment capabilities.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with lower torque requirements.
    • Backlash: Elastomeric couplings can have some level of backlash, which may impact precision in certain applications.
    • Performance: They provide damping of vibrations and shock absorption, protecting connected components from damage.
    • Installation: Elastomeric couplings are easy to install and require minimal maintenance.
    • Applications: They are commonly used in pumps, compressors, and applications where dampening of vibrations is crucial.
  3. Beam Couplings:
    • Design: Beam couplings consist of a single piece of material with spiral cuts that provide flexibility for misalignment compensation.
    • Misalignment Compensation: Beam couplings can handle angular misalignment but have limited capabilities for parallel misalignment.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with moderate torque requirements.
    • Backlash: Beam couplings typically have low or zero backlash, making them ideal for applications requiring precise motion transfer.
    • Performance: They offer good torsional stiffness and high torsional strength.
    • Installation: Beam couplings are simple to install and require little maintenance.
    • Applications: They are commonly used in small motors, robotics, and applications with tight space constraints.

Ultimately, the choice between flexible flange couplings, elastomeric couplings, or beam couplings depends on the specific requirements of the application. Factors such as the amount of misalignment, torque capacity, backlash tolerance, and the level of vibration dampening needed will influence the selection process. It’s essential to carefully consider the operating conditions and performance characteristics to ensure the coupling chosen optimally meets the demands of the mechanical system.

flexible flange coupling

Key Design Considerations for Flexible Flange Couplings in Power Transmission Systems

When using flexible flange couplings in power transmission systems, several critical design considerations should be taken into account to ensure optimal performance, reliability, and longevity of the coupling:

  • Misalignment Tolerance: One of the primary advantages of flexible flange couplings is their ability to compensate for misalignment between shafts. It is essential to determine the expected magnitude and type of misalignment (angular, parallel, or axial) that the coupling will encounter and select a coupling with appropriate misalignment tolerance.
  • Torsional Stiffness: While flexible flange couplings offer some level of compliance to dampen vibrations, excessive torsional flexibility can lead to decreased system stability. Choosing a coupling with the right balance of flexibility and stiffness is crucial for maintaining the desired torsional characteristics.
  • Torque Rating: The coupling’s torque rating must match or exceed the maximum torque requirements of the application. It is essential to consider the starting torque, peak torque, and continuous torque to avoid overloading the coupling.
  • Speed Rating: The coupling’s speed rating should be suitable for the operating speed of the system. High-speed applications may require couplings designed to withstand higher centrifugal forces.
  • Service Environment: Consider the environmental conditions in which the coupling will operate. Factors such as temperature extremes, presence of moisture or chemicals, and exposure to corrosive agents can impact the choice of materials and coatings for the coupling.
  • Space Constraints: The available space for the coupling installation may dictate the coupling’s dimensions and design. It is essential to select a compact coupling that fits within the allocated space while maintaining the required performance.
  • Material Selection: The choice of material for the flexible element (elastomeric, metallic, or composite) and the flanges should be based on factors such as torque requirements, misalignment compensation, and environmental compatibility.
  • Dynamic Balancing: In high-speed applications, dynamic balancing of the coupling can help minimize vibrations and improve the overall system’s reliability and service life.
  • Alignment: Although flexible flange couplings can tolerate misalignment, proper initial shaft alignment is still essential to reduce wear and maximize coupling life.
  • Load Distribution: Ensure that the coupling distributes the transmitted load evenly between the shafts to prevent localized stress concentration and premature failure.

Conclusion: Selecting the right flexible flange coupling for a power transmission system requires careful consideration of various design parameters. By understanding the application’s requirements and the coupling’s capabilities, engineers can ensure that the coupling will perform optimally and reliably, leading to efficient power transmission and reduced maintenance needs.

China Best Sales CHINAMFG Lz Type Flexible Pin & Bush Gear Couplings Flange Cover Connection Torque Coupling  China Best Sales CHINAMFG Lz Type Flexible Pin & Bush Gear Couplings Flange Cover Connection Torque Coupling
editor by CX 2024-04-09

China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings

Product Description

Product Details
 

General Products Application/Service Area Metal Parts Solution for Vehicle, Agriculture machine, Construction Machine, transportation equipment, Valve and Pump system. E.g.
Engine bracket, truck chassis bracket, gear box , gear housing , gear cover, shaft, spline shaft , pulley, flange, connection
pipe, pipe, hydraulic valve , valve housing ,Fitting , flange, wheel, flywheel, oil pump housing, starter housing, coolant pump
housing, transmission shaft , transmission gear, sprocket, chains etc.
Process for Casting Iron Sand Casting , Resin Sand Casting, Green Sand Casting, Shell Molding, Automatic Molding,
Casting Tolerance CT9-10 for Machine Molding Process,
CT8-9 for Shell Molding and Lost Foam Molding Casting Process
CT10-11 for Manual Molding Sand casting Process
Applicable Material Ductile Iron, Grey Iron Casting, or as customer request.
Applicable Finish Surface Treatment Shot/sand blast, polishing, Powder coating, ED- Coating, etc

Product Show

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Materials Used in Manufacturing Flexible Flange Couplings and Their Impact on Performance

Flexible flange couplings are commonly manufactured using various materials, each offering specific properties that can impact their performance in mechanical power transmission systems. The choice of material depends on factors such as application requirements, operating conditions, torque and speed demands, and environmental considerations. Some of the commonly used materials and their impact on performance are as follows:

  1. Elastomeric Materials (Rubber, Polyurethane, etc.): Elastomeric materials like rubber and polyurethane are widely used in flexible flange couplings. These materials provide excellent flexibility, which allows them to handle misalignment and dampen vibrations effectively. They can also absorb shocks and reduce transmission of torsional vibrations between shafts, contributing to smoother operation and reduced wear on connected machinery. However, elastomeric couplings may have limitations in high-temperature or aggressive chemical environments.
  2. Metal Alloys (Steel, Stainless Steel, etc.): Metal alloys, such as steel and stainless steel, are preferred when higher torque and load-carrying capacities are required. They offer superior strength and durability, making them suitable for heavy-duty applications. Stainless steel is particularly resistant to corrosion and is often used in harsh or corrosive environments. Metal couplings may not provide as much flexibility as elastomeric ones, but they compensate with higher torque transmission capabilities and increased reliability.
  3. Composite Materials (Fiberglass, Carbon Fiber, etc.): Composite materials are gaining popularity in various industries due to their unique combination of properties. They can offer a balance of flexibility and strength, making them suitable for applications where both misalignment accommodation and high torque transmission are necessary. Composite couplings are often lightweight, which can be advantageous for reducing the overall weight of rotating systems.
  4. Plastics (Nylon, Delrin, etc.): Plastics are sometimes used in less demanding applications where cost-effectiveness and low friction are essential. While they may not provide the same level of performance as elastomeric or metal couplings, they can still serve adequately in specific settings with lower torque and speed requirements.

The choice of material for flexible flange couplings must consider factors such as application-specific needs, environmental conditions, temperature range, chemical exposure, and maintenance requirements. It is essential to select a coupling material that matches the demands of the application to ensure optimal performance, longevity, and reliability.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings  China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings
editor by CX 2024-04-08

China high quality Mighty 2024 Manufacturing Cast Iron FCL Steel Flange Flexible Shaft Couplings

Product Description

Product Description

Flexible coupling model FCL is widely used for its compact designing, easy installation, convenient maintenance, small size and light weight. It is greatly demanded in medium and minor power transmission system driven by moters, such as speed reducers, hoists, compressos, conveyers, Spinning and weaving machines and ball mills. 

 

SIZE: FCL90 FCL100 FCL112 FCL125 FCL140 FCL160 FCL180 FCL200 FCL224 FCL220 FCL280 FCL315 FCL355 FCL400 FCL455 FCL560 FCL630 

 

Detailed Photos

 

Product Parameters

Contact us to check more series and parameters!

Our Advantages

Competitive Price

Shorter Delivery Date

Technical R&D Team

Professional Manufacturer for 20+ years

Strict QC Management:ISO9001:2015

Supplier of Well-known Brands
 

Main Products

 

Timing Pulley

V Belt Pulley

Taper Lock Bush

Locking Device

Sprockets

Gears& Racks

Shaft Collar

Transmission Belts

Universal Joint

Couplings

Packaging & Shipping

Packaging
Standard suitable package / Pallet or container.
Polybag inside export carton outside, blister and Tape and reel package available.
If customers have specific requirements for the packaging, we will gladly accommodate.
Shipping

10-20 working days ofter payment receipt comfirmed (based on actual quantity).
Packing standard export packing or according to customers demand.   

Professional goods shipping forward.

Company Profile

ZheJiang Mighty Machinery Co., Ltd. specializes in manufacturing mechanical power transmission components. We Mighty is the branch of SCMC Group, a wholly state-owned company, established in 1980.
About us:
-3 manufacturing factories
We have 5 technical staff, our FTY have strong capacity for design and process design, and more than 70 workers and double shift eveyday.
-Large quality of material purchase and stock
We ensure both the quality and low cost for material and production.
-Strick quality control
We have strict process inspection and final production inspection to ensure the perfect quality.
-20 years of machinery experience
MIGHTY’s products are mainly exported to Europe, America and the Middle East market. With the top-ranking management, professional technical support and abundant export experience, MIGHTY has established lasting and stable business partnership with many world famous companies and has gained good reputation from CHINAMFG customers.
 

FAQ

1. Are you a trading company or manufacturer?

We are a manufacturer for 20+ years with owning 3+ factories and also do exporting business. 

 

2. What’s your MOQ?

Usually 1 piece for ones in stock.

 

3. How long is your delivery time?

It takes around 3-5 days for ones in stock and 30 days around for bulk production.

4. Do you offer sample and is that free?

Yes, we could offer free sample for testing and the shipping cost is covered by our customers.

 

5. What if I don’t see the product specification I want?

No worries, we offer a complete line and you’re welcome for asking more specifications.

 

6. What is your payment terms?

 T/T, Paypal, L/C, D/P, D/A, Western Union, etc. and it’s decided by customers’ requirements.

If you have another question, pls feel free to contact me without hesitation as below:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Accommodation of Misalignment and Vibration Damping in Flexible Flange Couplings

Flexible flange couplings are designed to accommodate misalignment and provide vibration damping during operation, making them suitable for various industrial applications. The following features enable these capabilities:

  • Elastomeric Flexibility: Flexible flange couplings often use elastomeric materials, such as rubber or polyurethane, as the flexible element. These materials offer excellent flexibility, allowing the coupling to compensate for both angular and parallel misalignment between the connected shafts. The elastomeric element deforms under misalignment, preventing excessive loads and stress on the shafts and other connected components.
  • Torsional Compliance: The elastomeric flexibility of the coupling also provides torsional compliance. During operation, the elastomer can twist and flex to absorb torsional vibrations and shocks generated by the connected machinery. This helps reduce the transmission of vibrations and prevents them from propagating throughout the system, leading to smoother and quieter operation.
  • Flange Design: The flanges of flexible flange couplings are typically designed with a series of bolts or screws that secure the elastomeric element between them. The design of the flanges allows for limited axial movement, enabling the coupling to compensate for axial misalignment. This is particularly beneficial in applications where there may be some axial movement or thermal expansion of the shafts.
  • Resilient Bushings: Some flexible flange couplings use resilient bushings or inserts within the flange bolt holes. These bushings add an extra layer of vibration damping and help minimize the transmission of shock loads from one shaft to another. The bushings also assist in absorbing radial and axial vibrations, contributing to smoother operation.
  • Balanced Design: Properly balanced flexible flange couplings minimize vibrations by ensuring that the center of mass coincides with the rotational axis. This helps prevent excessive vibrations due to uneven distribution of mass, which can occur during rotation at high speeds.

By accommodating misalignment and providing vibration damping, flexible flange couplings enhance the overall reliability and performance of mechanical systems. They help protect machinery from excessive loads and stresses, reduce wear and tear on components, and improve the service life of the entire system.

China high quality Mighty 2024 Manufacturing Cast Iron FCL Steel Flange Flexible Shaft Couplings  China high quality Mighty 2024 Manufacturing Cast Iron FCL Steel Flange Flexible Shaft Couplings
editor by CX 2024-04-03

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling

Product Description

Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer PIN MH Rigid NM Jaw Gear   transmission industrial gearbox manufacture parts  pric F Flexible Coupling

YOXz is a coincidence machine with moving wheel which is in the output point of the coincidence machine and is connected with elastic axle connecting machine (plum CHINAMFG type elastic axle connecting machine or elastic pillar axle-connecting machine or even the axle-connecting machine designated by customers). Usually there are 3 connection types.

YOXz is inner wheel driver which has tight structure and the smallest axle size.The fittings of YOXz have a wide usage, simple structure and the size of it has basically be unified in the trade.The connection style of YOXz is that the axle size of it is longer but it is unnecessary to move the electromotive machine and decelerating machine. Only demolish the weak pillar and connected spiral bolt can unload the coincidence machine so it is extreme convenient. Customer must offer the size of electromotive machine axle (d1 L1) and decelerating machine axle (d2 L2). The wheel size (Dz Lz C) in the table is just for reference, the actual size is decided by customers.

 

Main Features

1. Applies to flexible drive shaft ,allowing a larger axial radial displacement and displacement.

2.Has a simple structure,easy maintenance .

3.Disassembly easy

4.low noise

5.Transmission efficiency loss,long useful working life.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Where to Find Reputable Suppliers or Manufacturers of Flexible Flange Couplings for Your Specific Power Transmission Needs?

When looking for reputable suppliers or manufacturers of flexible flange couplings, consider the following steps:

  1. Online Research: Start by conducting online research to identify companies that specialize in power transmission components, including flexible flange couplings. Look for manufacturers with a strong reputation, positive customer reviews, and a history of delivering high-quality products.
  2. Industry Directories: Industry-specific directories and trade publications often feature listings of suppliers and manufacturers. These directories can be a valuable resource to find companies that offer flexible flange couplings tailored to your industry’s needs.
  3. Trade Shows and Exhibitions: Attend trade shows and exhibitions related to power transmission, where you can meet suppliers in person, examine product samples, and discuss your specific requirements.
  4. Referrals and Recommendations: Seek referrals or recommendations from industry peers, colleagues, or professionals who have experience with flexible flange couplings. Their insights can lead you to reliable suppliers.
  5. Supplier Websites: Visit the websites of potential suppliers to gather detailed information about their products, manufacturing processes, certifications, and capabilities. Look for suppliers with a comprehensive product range and customization options.
  6. Quality and Certifications: Verify if the supplier follows industry standards and has relevant certifications such as ISO, ASME, or API. These certifications demonstrate their commitment to quality and compliance.
  7. Technical Support: Evaluate the technical support and customer service provided by the supplier. A reliable supplier should be responsive to your queries, offer guidance on selecting the right coupling, and provide after-sales support.
  8. Sample and Testing: Request samples of the flexible flange couplings to evaluate their quality and suitability for your application. Some suppliers may also offer testing services to validate the performance of their products.
  9. Price and Delivery: Obtain quotes from multiple suppliers to compare prices, delivery times, and shipping costs. However, prioritize quality and reliability over cost alone.

By following these steps, you can find reputable suppliers or manufacturers that can meet your specific power transmission needs with high-quality flexible flange couplings. Remember to conduct thorough research and consider factors beyond price to ensure you choose a supplier that can provide durable and efficient couplings for your application.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling  China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling
editor by CX 2024-04-03

China Professional En14525 DN600 Ductile Cast Iron Di Wide Range Flexible Flange Couplings

Product Description

EN14525 DN600 ductile cast iron di wide range flexible flange couplings
 

Product Description

APPLICATION
Universal flange adaptor is also called wide range flange adaptor, tolerance range flange adaptor .

 It can fit most standard pipe materials and therefore dramatically reduces the stocks of dedicated couplings.
 It is suitable for steel , GRP, PVC, PE, Ductile Iron , Cast Iron and Asbestors Cement pipes.
 Size from DN40-DN2000

PRESSURE
PN10, PN16, PN25. Flange according to ISO2531/ EN545,/EN1092

MATERIAL

 

 

Body

Ductile Iron GGG50/40

Gland

Ductile Iron GGG50/40

Gasket

CHINAMFG according to EN681-1

Bolt &Nut

Galvanized carbon steel / hot dip galvanized steel/dacromet coating steel 4.8/8.8 grade

Coating

CHINAMFG boned epoxy more than 250 micron/ Rilsan Nylon

 

Item No.

Item Name

Material

Specification

1

Body

Ductile Iron

GGG50

2

End Ring

Ductile Iron

GGG50

3

Gasket

Rubber

CHINAMFG or NBR

4

Bolt

Galvanized Steel

ISO898-1:1999

5

Washer

Galvanized Steel

 

6

Nut

Galvanized Steel

ISO898-2:1992

7

Cap

Plastic

 

Please contact us for more detail , package,delivery time and shipment.
welcome your enquiry ,we will do our best to support.

 

Detailed Photos

 

 

Related Products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Comparison of Flexible Flange Couplings with Other Coupling Types

Flexible flange couplings, elastomeric couplings, and beam couplings are all popular choices for transmitting torque and accommodating misalignment in mechanical systems. Each type has its unique features and advantages, making them suitable for various applications. Here’s a comparison of flexible flange couplings with elastomeric and beam couplings:

  1. Flexible Flange Couplings:
    • Design: Flexible flange couplings consist of two flanges with flexible elements (often rubber or polyurethane) connecting them. The flexibility of the coupling allows it to accommodate angular, axial, and parallel misalignments.
    • Misalignment Compensation: Flexible flange couplings can handle moderate to high levels of misalignment, making them suitable for applications where misalignment is expected.
    • Torque Capacity: They generally have a high torque capacity, making them suitable for high-power applications.
    • Backlash: Flexible flange couplings can have minimal backlash, ensuring accurate and precise motion transfer.
    • Performance: They provide damping of vibrations, reducing resonance in the system and minimizing wear on connected components.
    • Installation: Flexible flange couplings are relatively easy to install and require minimal maintenance.
    • Applications: They are commonly used in industrial machinery, power transmission systems, and applications with moderate to high misalignment requirements.
  2. Elastomeric Couplings:
    • Design: Elastomeric couplings use an elastomer (rubber) element to connect two hubs. The elastomer provides flexibility for misalignment compensation.
    • Misalignment Compensation: Elastomeric couplings can handle angular and parallel misalignments but have limited axial misalignment capabilities.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with lower torque requirements.
    • Backlash: Elastomeric couplings can have some level of backlash, which may impact precision in certain applications.
    • Performance: They provide damping of vibrations and shock absorption, protecting connected components from damage.
    • Installation: Elastomeric couplings are easy to install and require minimal maintenance.
    • Applications: They are commonly used in pumps, compressors, and applications where dampening of vibrations is crucial.
  3. Beam Couplings:
    • Design: Beam couplings consist of a single piece of material with spiral cuts that provide flexibility for misalignment compensation.
    • Misalignment Compensation: Beam couplings can handle angular misalignment but have limited capabilities for parallel misalignment.
    • Torque Capacity: They have a moderate torque capacity and are suitable for applications with moderate torque requirements.
    • Backlash: Beam couplings typically have low or zero backlash, making them ideal for applications requiring precise motion transfer.
    • Performance: They offer good torsional stiffness and high torsional strength.
    • Installation: Beam couplings are simple to install and require little maintenance.
    • Applications: They are commonly used in small motors, robotics, and applications with tight space constraints.

Ultimately, the choice between flexible flange couplings, elastomeric couplings, or beam couplings depends on the specific requirements of the application. Factors such as the amount of misalignment, torque capacity, backlash tolerance, and the level of vibration dampening needed will influence the selection process. It’s essential to carefully consider the operating conditions and performance characteristics to ensure the coupling chosen optimally meets the demands of the mechanical system.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China Professional En14525 DN600 Ductile Cast Iron Di Wide Range Flexible Flange Couplings  China Professional En14525 DN600 Ductile Cast Iron Di Wide Range Flexible Flange Couplings
editor by CX 2024-04-02

China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings

Product Description

LMD Single Flange Type Plum Elastic Coupling(GB/T 5272-2002)

♦Description
Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.

The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with * can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Types of Flexible Flange Couplings in Industrial Applications

Flexible flange couplings come in various designs and configurations to suit different industrial applications. Some of the commonly used types include:

  • 1. Diaphragm Couplings: Diaphragm couplings consist of two flanges with a thin metal diaphragm in between. The diaphragm is designed to flex and move with minimal deformation, allowing for high torsional stiffness and excellent misalignment compensation. They are commonly used in high-speed and high-precision applications, such as pumps, compressors, and servo systems.
  • 2. Disc Couplings: Disc couplings use a series of stainless steel or metallic discs stacked alternately to create flexibility. These couplings can handle high torque, have good misalignment capabilities, and provide excellent vibration damping. They are suitable for applications that require high torque transmission, such as industrial machinery and power generation equipment.
  • 3. Grid Couplings: Grid couplings feature a flexible grid element made of spring steel or elastomeric material between the flanges. The grid provides flexibility while maintaining high torsional rigidity. These couplings are widely used in industries like material handling, conveyors, and pumps.
  • 4. Elastomeric Couplings: Elastomeric couplings use a rubber or elastomeric material as the flexible element. They are highly efficient in dampening vibrations and can accommodate misalignment. Elastomeric couplings find applications in various industries, including HVAC systems, marine equipment, and conveyor systems.
  • 5. Tyre Couplings: Tyre couplings have a flexible tyre-like element made of rubber between the flanges. They offer good shock absorption, compensate for misalignment, and reduce vibrations. These couplings are commonly used in heavy-duty applications, such as mining equipment and steel rolling mills.
  • 6. Oldham Couplings: Oldham couplings use three discs – two outer discs with radial slots and an intermediate disc with perpendicular slots. The intermediate disc slides between the outer discs, providing flexibility and misalignment compensation. They are ideal for transmitting torque between shafts with limited parallel misalignment and are used in printing machines, textile equipment, and robotics.

Conclusion: The selection of a specific type of flexible flange coupling depends on the requirements of the industrial application, including the amount of misalignment, torque transmission, speed, and the need for vibration dampening. Each type of coupling offers unique advantages, making them suitable for various industrial setups where reliable and flexible power transmission is essential.

China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings  China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings
editor by CX 2024-03-06

China Professional Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings

Product Description

Product Details
 

General Products Application/Service Area Metal Parts Solution for Vehicle, Agriculture machine, Construction Machine, transportation equipment, Valve and Pump system. E.g.
Engine bracket, truck chassis bracket, gear box , gear housing , gear cover, shaft, spline shaft , pulley, flange, connection
pipe, pipe, hydraulic valve , valve housing ,Fitting , flange, wheel, flywheel, oil pump housing, starter housing, coolant pump
housing, transmission shaft , transmission gear, sprocket, chains etc.
Process for Casting Iron Sand Casting , Resin Sand Casting, Green Sand Casting, Shell Molding, Automatic Molding,
Casting Tolerance CT9-10 for Machine Molding Process,
CT8-9 for Shell Molding and Lost Foam Molding Casting Process
CT10-11 for Manual Molding Sand casting Process
Applicable Material Ductile Iron, Grey Iron Casting, or as customer request.
Applicable Finish Surface Treatment Shot/sand blast, polishing, Powder coating, ED- Coating, etc

Product Show

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Specialized Flexible Flange Couplings for High-Torque or High-Speed Applications

Yes, there are specialized flexible flange couplings designed specifically for high-torque or high-speed applications. These couplings are engineered to meet the specific demands of such industrial scenarios, where torque and speed requirements are elevated. Here are some key features and design considerations of these specialized couplings:

  1. High-Torque Capacity: Couplings for high-torque applications are constructed with robust materials and enhanced structural integrity to withstand the increased torque loads. They may incorporate larger and thicker flanges, as well as heavy-duty flexible elements such as metallic or composite discs. These elements help transmit and distribute torque efficiently while minimizing the risk of fatigue or failure.
  2. High-Speed Capabilities: In high-speed applications, dynamic balance is crucial to prevent vibration and resonance issues. Specialized couplings for high-speed scenarios are meticulously balanced during the manufacturing process to ensure smooth operation at elevated rotational speeds. Additionally, low weight and aerodynamic design may be implemented to minimize rotational inertia and reduce centrifugal forces.
  3. Temperature Resistance: High-torque and high-speed applications can generate considerable heat due to friction and mechanical forces. Therefore, specialized flexible flange couplings for such scenarios are often constructed from materials with high-temperature resistance. Metallic alloys or advanced polymers with excellent thermal properties are common choices to maintain performance and integrity under elevated temperatures.
  4. Customizable Designs: Manufacturers of flexible flange couplings often offer customization options to tailor the coupling’s specifications for unique high-torque or high-speed requirements. This customization may involve selecting specific materials, flange sizes, or incorporating additional features like cooling fins or heat dissipation mechanisms.
  5. Torsional Stiffness: While flexible couplings are known for their ability to accommodate misalignments, specialized high-torque couplings strike a balance between flexibility and torsional stiffness. The coupling should be flexible enough to handle misalignments while providing the necessary torsional stiffness to ensure accurate torque transmission.

Overall, these specialized flexible flange couplings are engineered to deliver reliable and efficient performance in challenging high-torque or high-speed applications. They ensure smooth power transmission, minimize vibrations, and protect connected equipment from excessive mechanical stress, ultimately enhancing the safety and productivity of the machinery they serve.

flexible flange coupling

Flexibility of Retrofitting Flexible Flange Couplings for Improved Performance

Yes, flexible flange couplings can be retrofitted into existing systems to improve performance. Retrofitting is a cost-effective solution for upgrading older machinery or systems without the need for significant modifications or replacements.

Here are the key points to consider when retrofitting flexible flange couplings:

  • Compatibility: Before retrofitting, ensure that the selected flexible flange coupling is compatible with the existing system. Check the dimensions, torque capacity, and other specifications to ensure a proper fit and reliable performance.
  • Misalignment Compensation: Flexible flange couplings can accommodate misalignments, making them suitable for retrofitting into systems where misalignments may have occurred over time due to wear and tear or other factors. They can help restore proper alignment and improve system efficiency.
  • Vibration Reduction: If the existing system experiences excessive vibrations, retrofitting with flexible flange couplings can help dampen these vibrations and reduce the stress on components, leading to improved overall system performance and reliability.
  • Torque Transmission: Flexible flange couplings are designed to transmit high torques, which is beneficial for retrofitting into systems where torque requirements may have increased or changed since the original coupling was installed.
  • Installation: Retrofitting should be done carefully and by following the manufacturer’s guidelines. Proper installation ensures that the flexible flange coupling operates as intended and provides the desired performance improvements.
  • System Evaluation: Before retrofitting, evaluate the overall system to identify any potential issues that may need to be addressed. Retrofitting with flexible flange couplings can enhance performance, but it’s essential to ensure that other components are in good condition and suitable for continued operation.

Flexible flange couplings offer versatility and adaptability, making them a viable option for retrofitting into various mechanical systems. They can improve the system’s performance, reduce maintenance requirements, and extend the service life of the equipment.

However, it’s advisable to consult with coupling manufacturers or engineering experts to determine the best type and size of flexible flange coupling for the specific retrofitting application. They can provide valuable insights and recommendations to ensure a successful and effective retrofitting process.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China Professional Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings  China Professional Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings
editor by CX 2024-03-02

China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings

Product Description

LMS Double Flange Type Plum Elastic Coupling(GB/T 5272-2002)

Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission. Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings  China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings
editor by CX 2024-02-23