Tag Archives: custom shaft

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling flange coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Can Flange Couplings Be Used in Applications with Varying Operating Temperatures?

Yes, flange couplings can be used in applications with varying operating temperatures. However, the selection of the appropriate flange coupling material is essential to ensure reliable performance and longevity under these conditions.

The operating temperature of a flange coupling depends on several factors, including the type of material used, the surrounding environment, and the specific application. Here are some key considerations:

  • Temperature Rating of Material: Flange couplings are available in various materials, such as steel, stainless steel, aluminum, and different alloys. Each material has its temperature rating, which indicates the maximum temperature the coupling can handle without compromising its mechanical properties. It is crucial to select a flange coupling made from a material that can withstand the highest expected operating temperature in the application.
  • Thermal Expansion: Temperature variations can cause thermal expansion and contraction of the connected equipment and shafts. Flange couplings must be able to accommodate these changes in length without imposing excessive forces on the machinery. Flexible couplings with certain designs, such as those with elastomeric elements, can better handle thermal expansion and help minimize stress on the system.
  • Lubrication: Operating at high temperatures may require the use of specialized high-temperature lubricants to ensure smooth operation and reduce friction and wear between the coupling’s moving parts. Proper lubrication is essential to prevent premature failure and to maintain the coupling’s performance over time.
  • Environmental Factors: The surrounding environment can also influence the operating temperature of the flange coupling. For example, couplings used in industrial settings may be exposed to hot processes or elevated ambient temperatures. In such cases, the coupling’s material and design should be selected to withstand the specific environmental conditions.

It is crucial to consult the manufacturer’s guidelines and technical specifications to determine the suitable temperature range for a particular flange coupling model. Additionally, considering the application’s operating conditions, including temperature variations, helps in choosing the right flange coupling to ensure reliable and safe performance in a wide range of temperature environments.

flange coupling

What Role Does a Flange Coupling Play in Minimizing Wear and Tear on Connected Components?

A flange coupling plays a critical role in minimizing wear and tear on connected components in rotating machinery. It accomplishes this by effectively transmitting torque between two shafts while accommodating misalignment and reducing the transmission of shock and vibration. Here’s how a flange coupling achieves these benefits:

  • Misalignment Compensation: Flange couplings are designed to accommodate both angular and parallel misalignment between the shafts they connect. As machinery operates, shafts may experience slight misalignment due to thermal expansion, manufacturing tolerances, or other factors. The flexible nature of certain flange coupling designs allows them to compensate for these misalignments, preventing excessive stress on connected components that could lead to wear.
  • Shock and Vibration Damping: Flange couplings help dampen shock and vibration during machinery operation. When a machine experiences sudden impacts or vibrations, the flexibility of some flange coupling types absorbs and disperses these forces. By reducing the transfer of shocks and vibrations to the connected components, flange couplings protect the machinery from excessive stress and premature wear.
  • Smooth Torque Transmission: Flange couplings provide a smooth and reliable means of transmitting torque from one shaft to another. The secure connection between the two shafts ensures that torque is efficiently transmitted without slippage or sudden jolts. This smooth torque transmission helps prevent unnecessary wear on the shafts and other connected components.
  • Reduced Maintenance: By minimizing wear and tear on connected components, flange couplings contribute to reduced maintenance requirements. When components experience less stress and wear, their lifespan is extended, resulting in fewer maintenance interventions and decreased downtime for repairs or replacements.
  • Protection Against Overloads: In cases of sudden overloads or torque spikes, flange couplings can act as a safety feature by allowing some degree of slippage or disengagement. This protects the connected machinery from potential damage caused by excessive loads.

In summary, a flange coupling’s ability to compensate for misalignment, dampen shocks and vibrations, provide smooth torque transmission, and protect against overloads makes it a crucial component in minimizing wear and tear on connected machinery. By choosing the appropriate flange coupling design for a specific application, engineers can enhance the reliability and longevity of the entire system while reducing maintenance and downtime costs.

flange coupling

What are the Maintenance Requirements for Flange Couplings?

Flange couplings require regular maintenance to ensure optimal performance and longevity. Proper maintenance can help prevent unexpected failures and downtime in the machinery or equipment. Here are the key maintenance requirements for flange couplings:

1. Inspection: Regularly inspect the flange coupling for signs of wear, damage, or misalignment. Check for cracks, corrosion, or any deformations in the flange and bolt holes. Ensure that the coupling is properly aligned with the shafts.2. Lubrication: Lubricate the flange coupling as per the manufacturer’s recommendations. Proper lubrication helps reduce friction and wear between the mating surfaces of the flanges, bolts, and nuts. Use the right type of lubricant that is compatible with the coupling material.3. Bolt Torque Check: Check the bolt torque regularly to ensure that the flange coupling is securely fastened. Loose bolts can lead to misalignment and coupling failure. Follow the recommended torque values provided by the manufacturer.4. Alignment: Maintain proper shaft alignment to prevent excessive forces on the flange coupling. Misalignment can cause uneven load distribution and accelerated wear on the coupling components.5. Environmental Protection: If the flange coupling is exposed to harsh or corrosive environments, take necessary measures to protect it. Consider using protective coatings or seals to prevent corrosion and damage.6. Regular Servicing: Schedule regular servicing of the machinery or equipment, including the flange coupling. This allows for a thorough inspection and timely replacement of worn-out or damaged components.7. Replacement of Worn Parts: When signs of wear or damage are detected during inspections, replace the worn or damaged parts promptly. Delaying the replacement can lead to further damage and compromise the performance of the coupling.8. Follow Manufacturer’s Guidelines: Always follow the maintenance guidelines provided by the flange coupling manufacturer. They may have specific recommendations based on the design and material of the coupling. Proper maintenance and regular checks can extend the life of the flange coupling and contribute to the overall reliability and efficiency of the connected machinery. It is essential to create a maintenance schedule and adhere to it diligently to ensure the smooth operation of the flange coupling and the entire mechanical system.

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  flange couplingChina Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  flange coupling
editor by CX 2024-05-08

China Custom Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)

Product Description

JAW coupling,

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

Element material Rubber Urethane Hytrel Brozen

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in applications with high shock and impact loads?

Yes, flexible couplings can be used in applications with high shock and impact loads. In fact, they are specifically designed to absorb and dampen shock loads, making them well-suited for such challenging environments. Here’s how flexible couplings handle high shock and impact loads:

  • Material Flexibility: Flexible couplings are made from materials with high elasticity and flexibility, such as elastomers (rubber-like materials) or metal alloys. When a shock load is applied, these materials can deform temporarily, absorbing the impact energy and preventing it from transmitting to the connected equipment.
  • Vibration Damping: Shock loads often generate vibrations that can be harmful to the equipment. Flexible couplings with vibration-damping properties can further mitigate the effects of shock loads by absorbing and dissipating the vibration energy, reducing the stress on the machinery.
  • Design Features: Some flexible couplings are specifically engineered with features to handle high shock loads. These may include reinforced structures, enhanced damping characteristics, or additional support to withstand the sudden forces generated by impacts.
  • Load Distribution: Flexible couplings help distribute the shock load more evenly across the flexible elements or components, preventing localized stress concentrations that could lead to component failure.
  • Resilience: The flexibility and resilience of the coupling material allow it to return to its original shape after the shock load has dissipated. This ability to recover from deformation ensures that the coupling can continue to accommodate misalignment and transmit torque effectively.
  • Protection of Connected Equipment: By absorbing shock loads, flexible couplings protect the connected equipment from sudden and severe impacts, reducing the risk of damage or premature failure of critical components.

Applications with high shock and impact loads can be found in various industries, including mining, construction, material handling, and heavy machinery. Flexible couplings provide an essential role in maintaining the reliability and longevity of the equipment in these demanding environments.

When selecting a flexible coupling for an application with high shock and impact loads, it is crucial to consider the specific requirements and operating conditions. Consulting with the coupling manufacturer or a qualified engineer can ensure the proper coupling is chosen to meet the unique challenges of the application.

flexible coupling

Can flexible couplings be used in high-temperature environments, such as furnaces and kilns?

Flexible couplings can be used in high-temperature environments, such as furnaces and kilns, but the selection of the appropriate coupling is crucial to ensure reliable performance and longevity under these extreme conditions. Here are some key considerations:

  • Material Selection: The choice of materials is critical when using flexible couplings in high-temperature applications. Look for couplings made from heat-resistant materials that can withstand the elevated temperatures without experiencing significant degradation. Common materials used for high-temperature couplings include stainless steel, high-temperature alloys, and certain types of elastomers designed for heat resistance.
  • Lubrication: High temperatures can cause lubricants to break down or evaporate more quickly. Some flexible couplings may require specialized high-temperature lubricants to ensure smooth operation and reduce wear at elevated temperatures. Check the manufacturer’s recommendations for lubrication in high-temperature environments.
  • Thermal Expansion: In high-temperature applications, the equipment and shafts may experience thermal expansion, leading to misalignment. Flexible couplings with higher misalignment capabilities may be necessary to accommodate these thermal effects and prevent additional stress on the system.
  • Torsional Stiffness: Consider the required torsional stiffness for the specific application. In high-temperature environments, couplings may experience changes in stiffness due to temperature variations. It is essential to choose a coupling with appropriate torsional characteristics for the intended operating temperature range.
  • Application Specifics: Evaluate the specific operating conditions of the furnace or kiln, including the maximum and fluctuating temperatures, vibration levels, and potential exposure to chemicals or other harsh elements. Choose a coupling that can withstand these conditions without compromising performance or safety.
  • Coupling Type: Different types of flexible couplings offer varying degrees of heat resistance and performance capabilities. For example, certain types of disc couplings or metal bellows couplings are more suitable for high-temperature environments due to their robust construction and resistance to heat.
  • Regular Maintenance: In high-temperature applications, couplings may be subject to more stress and wear. Regular inspection and maintenance are essential to monitor the coupling’s condition, lubrication, and alignment to ensure it continues to function optimally in the challenging environment.

Overall, flexible couplings can be utilized in high-temperature environments, but it is vital to choose a coupling specifically designed and rated for these conditions. Working closely with coupling manufacturers and considering the specific demands of the application will help ensure that the selected coupling can handle the challenges posed by furnaces, kilns, and other high-temperature equipment, providing reliable power transmission and contributing to the overall efficiency and safety of the system.

flexible coupling

What materials are commonly used in manufacturing flexible couplings?

Flexible couplings are manufactured using a variety of materials, each offering different properties and characteristics suited for specific applications. The choice of material depends on factors such as the application’s requirements, environmental conditions, torque capacity, and desired flexibility. Here are some of the commonly used materials in manufacturing flexible couplings:

  • Steel: Steel is a widely used material in flexible couplings due to its strength, durability, and excellent torque transmission capabilities. Steel couplings are suitable for heavy-duty industrial applications with high torque requirements and harsh operating conditions.
  • Stainless Steel: Stainless steel is often used to manufacture flexible couplings in environments with high corrosion potential. Stainless steel couplings offer excellent resistance to rust and other corrosive elements, making them ideal for marine, food processing, and chemical industry applications.
  • Aluminum: Aluminum couplings are lightweight, have low inertia, and provide excellent balance. They are commonly used in applications where reducing weight is critical, such as aerospace and robotics.
  • Brass: Brass couplings are known for their electrical conductivity and are used in applications where electrical grounding or electrical isolation is required, such as in certain industrial machinery or electronics equipment.
  • Cast Iron: Cast iron couplings offer good strength and durability and are often used in industrial applications where resistance to shock loads and vibrations is necessary.
  • Plastic/Polymer: Some flexible couplings use high-performance polymers or plastics, such as polyurethane or nylon. These materials provide good flexibility, low friction, and resistance to chemicals. Plastic couplings are suitable for applications where corrosion resistance and lightweight are essential.
  • Elastomers: Elastomers are used as the flexible elements in many flexible couplings. Materials like natural rubber, neoprene, or urethane are commonly used as elastomer spider elements, providing flexibility and vibration damping properties.

The selection of the coupling material depends on the specific needs of the application. For instance, high-performance and heavy-duty applications may require steel or stainless steel couplings for their robustness, while applications where weight reduction is crucial may benefit from aluminum or polymer couplings. Additionally, the choice of material is influenced by factors such as temperature range, chemical exposure, and electrical requirements in the application’s operating environment.

Manufacturers typically provide material specifications for their couplings, helping users make informed decisions based on the specific demands of their applications.

China Custom Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)  China Custom Cast Iron Flexible Jaw Coupling for General Shaft Connection (L035)
editor by CX 2024-04-29

China manufacturer China Manufacturer Flexible Shaft Sprocket Roller Chain Coupling Custom for

Product Description

Product Description

 

Hot Selling GL Type Spline Rigid Shaft Couplings Roller Chain Coupling For Industry Machine

FEATURES
Manufactured according to relevant industrial standards 
Available in many sizes, ratings, and product types, including flexible shaft couplings and OK couplings 
Fabricated from a variety of high-grade steel 

BENEFITS
Several surface treatment processes protect against corrosion  
Customized products are available 
Large couplings withstand very high torque 
Flexible shaft couplings compensate for shaft misalignment

The chain coupling consists of two-strand roller chains, 2 sprockets and AL-Alloy cover, features simple and compact structure, and high flexibility, power transmission capability and durability.

What’s more ,the chain coupling allows simple connection/disconnection, and the use of the housing enhances safety and durability.    

The number of roller depends CHINAMFG the specific application

Chain No. Pitch

P

mm

Roller diameter
d1max

mm

Width between inner plates
b1min

mm

Pin diameter
d2max

mm

Pin length Inner plate depth
h2max

mm

Plate thickness

Tmax

mm

Tensile strength

Qmin

kN/lbf

Average tensile strength

Q0
kN

Weight per meter
q

kg/m

Lmax

mm

Lcmax

mm

08AF36 12.700 7.95 21.70 3.96 30.8 32.1 12.00 1.50 13.8/3135.36 16.20 1.070
10AF13 15.875 10.16 16.31 5.08 27.6 29.1 15.09 2.03 22.2/5045 27.50 1.350
10AF71 15.875 10.16 19.00 5.08 30.5 32.2 15.09 2.03 21.8/4901 24.40 1.480
*10AF75 15.875 10.16 45.60 5.08 57.0 58.5 15.09 2.03 21.8/4901 24.40 2.540
12AF2 19.050 11.91 19.10 5.94 32.6 34.4 18.00 2.42 31.8/7227 38.20 1.900
12AF6 19.050 11.91 18.80 5.94 31.9 33.5 18.00 2.42 31.8/7227 38.20 1.870
12AF26 19.050 11.91 19.36 5.94 31.9 33.5 18.00 2.42 31.8/7227 38.20 1.940
12AF34 19.050 11.91 19.00 5.94 31.9 31.9 18.00 2.42 31.1/7066 38.20 1.860
12AF54 19.050 11.91 19.50 5.84 31.9 31.9 18.00 2.29 31.1/7066 38.20 1.607
*12AF97 19.050 11.91 35.35 5.94 48.8 50.5 18.00 2.42 31.8/7149 38.20 2.630
*12AF101 19.050 11.91 37.64 5.94 51.2 52.9 18.00 2.42 31.8/7149 38.20 1.990
*12AF124 19.050 11.91 20.57 5.94 33.9 35.7 18.00 2.42 31.8/7149 38.20 1.910
16AF25 25.400 15.88 25.58 7.92 42.4 43.9 24.00 3.25 56.7/12886 63.50 3.260
*16AF40 25.400 15.88 70.00 7.92 87.6 91.1 24.00 3.25 56.7/12886 63.50 5.780
*16AF46 25.400 15.88 36.00 7.92 53.3 56.8 24.00 3.25 56.7/12886 63.50 3.880
*16AF75 25.400 15.88 56.00 7.92 73.5 76.9 24.00 3.25 56.7/12746 63.50 5.110
*16AF111 25.400 15.88 45.00 7.92 62.7 65.8 24.00 3.25 56.7/12746 63.50 4.480
*16AF121 25.400 15.88 73.50 7.92 91.3 94.7 24.00 3.25 56.7/12746 63.50 6.000

*The number of roller depends CHINAMFG the specific application

Chain No. Pitch
P

mm

Roller diameter
d1max

mm

Width between inner plates
b1min

mm

Pin diameter
d2max

mm

Pin length Inner plate depth
h2max

mm

Plate thickness

Tmax

mm

Tensile strength

Qmin

kN/lbf

Average tensile strength

Q0

kN

Weight per meter
q

kg/m

Lmax

mm

Lcmax

mm

*20AF44 31.750 19.05 32.00 9.53 53.5 57.8 30.00 4.00 86.7/19490 99.70 4.820
*24AF27 38.100 22.23 75.92 11.10 101.0 105.0 35.70 4.80 124.6/28571 143.20 9.810
*06BF27 9.525 6.35 18.80 3.28 26.5 28.2 8.20 1.30 9.0/2045 9.63 0.770
*06BF31 9.525 6.35 16.40 3.28 23.4 24.4 8.20 1.30 9.0/2045 9.63 0.660
*06BF71 9.525 6.35 16.50 3.28 24.5 25.6 8.20 1.30 9.0/2571 9.63 0.830
08BF97 12.700 8.51 15.50 4.45 24.8 26.2 11.80 1.60 18.0/4989.6 19.20 0.980
*08BF129 12.700 8.51 35.80 4.45 45.1 46.1 11.80 1.60 18.0/4989.6 19.02 1.500
10BF21 15.875 10.16 42.83 5.08 52.7 54.1 14.70 1.70 22.0/5000 25.30 2.260
10BF43 15.875 7.03 27.80 5.08 39.0 40.6 14.70 2.03 22.4/5090 25.76 1.140
*10BF43-S 15.875 10.00 27.80 5.08 39.0 40.6 14.70 2.03 22.4/5090 25.76 1.800
*16BF75 25.400 15.88 27.50 8.28 47.4 50.5 21.00 4.15/3.1 60.0/13488 66.00 3.420
*16BF87 25.400 15.88 35.00 8.28 54.1 55.6 21.00 4.15/3.1 60.0/13488 66.00 3.840
*16BF114 25.400 15.88 49.90 8.28 69.0 72.0 21.00 4.15/3.1 60.0/13488 66.00 4.740
*20BF45 31.750 19.05 55.01 10.19 76.8 80.5 26.40 4.5/3.5 95.0/21356 104.50 6.350
*24BF33 38.100 25.40 73.16 14.63 101.7 106.2 33.20 6.0/4.8 160.0/35968 176.00 11.840

Advantages:

1. Material:  C45 steel, Aluminum, Rubber and plastic etc.

2. High efficiency in transmission

3. Finishing: blacken, phosphate-coat, and oxidation.

4. Different models suitable for your different demands

5. Application in wide range of environment.

6. Quick and easy mounting and disassembly.

7. Resistant to oil and electrical insulation.

8. Identical clockwise and anticlockwise rotational characteristics.

9. Small dimension, low weight, high transmitted torque.

10. It has good performance.
 

Partnerships Reliable Supply-Chain:

Based on our experienced team and strict, effective supply chain management, Granville products deliver premium quality, and performance our customers have relied on for years. From a full range of bearings, mounted bearing units, power transmission products, and related markets around the world, we provide the industry’s most comprehensive range of qualified products available today.

Advantage Manufacturing Processesand Quality Control:

01 Heat Treatment

02 Centerless Grinding Machine 11200 (most advanced)

03 Automatic Production Lines for Raceway

04 Automatic Production Lines for Raceway

05 Ultrasonic Cleaning of Rings

06 Automatic Assembly

07 Ultrasonic Cleaning of Bearings

08 Automatic Greasing, Seals Pressing

09 Measurement of Bearing Vibration (Acceleration)

10 Measurement of Bearing Vibration (Speed)

11 Laser Marking

12 Automatic Packing

1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings be used in applications with high shock and impact loads?

Yes, flexible couplings can be used in applications with high shock and impact loads. In fact, they are specifically designed to absorb and dampen shock loads, making them well-suited for such challenging environments. Here’s how flexible couplings handle high shock and impact loads:

  • Material Flexibility: Flexible couplings are made from materials with high elasticity and flexibility, such as elastomers (rubber-like materials) or metal alloys. When a shock load is applied, these materials can deform temporarily, absorbing the impact energy and preventing it from transmitting to the connected equipment.
  • Vibration Damping: Shock loads often generate vibrations that can be harmful to the equipment. Flexible couplings with vibration-damping properties can further mitigate the effects of shock loads by absorbing and dissipating the vibration energy, reducing the stress on the machinery.
  • Design Features: Some flexible couplings are specifically engineered with features to handle high shock loads. These may include reinforced structures, enhanced damping characteristics, or additional support to withstand the sudden forces generated by impacts.
  • Load Distribution: Flexible couplings help distribute the shock load more evenly across the flexible elements or components, preventing localized stress concentrations that could lead to component failure.
  • Resilience: The flexibility and resilience of the coupling material allow it to return to its original shape after the shock load has dissipated. This ability to recover from deformation ensures that the coupling can continue to accommodate misalignment and transmit torque effectively.
  • Protection of Connected Equipment: By absorbing shock loads, flexible couplings protect the connected equipment from sudden and severe impacts, reducing the risk of damage or premature failure of critical components.

Applications with high shock and impact loads can be found in various industries, including mining, construction, material handling, and heavy machinery. Flexible couplings provide an essential role in maintaining the reliability and longevity of the equipment in these demanding environments.

When selecting a flexible coupling for an application with high shock and impact loads, it is crucial to consider the specific requirements and operating conditions. Consulting with the coupling manufacturer or a qualified engineer can ensure the proper coupling is chosen to meet the unique challenges of the application.

flexible coupling

How does a flexible coupling handle misalignment in large rotating equipment?

Flexible couplings are designed to accommodate various types of misalignment in large rotating equipment, ensuring smooth and efficient power transmission while minimizing stress on connected components. Here’s how flexible couplings handle different types of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two connected shafts are not collinear and form an angle. Flexible couplings can handle angular misalignment by allowing the coupling elements to flex and move slightly, thus accommodating the angle between the shafts. The flexible elements, often made of elastomeric materials or metallic membranes, can bend and twist to compensate for angular misalignment, ensuring that the coupling remains engaged and transfers torque effectively.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the two shafts are not perfectly aligned along their axes, resulting in a lateral shift. Flexible couplings can handle parallel misalignment through their ability to move radially, allowing the flexible elements to adjust and take up the offset. This capability prevents excessive side loads on the shafts and bearings, reducing wear and increasing the lifespan of the equipment.
  • Axial Misalignment: Axial misalignment occurs when there is a linear displacement of one shaft relative to the other, either toward or away from the other shaft. Some flexible couplings, such as certain types of flexible disc couplings, can accommodate a limited amount of axial misalignment. However, for large axial movement, other types of couplings or special designs may be required.

The flexibility of the coupling elements allows them to act as a buffer between the shafts, dampening shocks, vibrations, and torsional forces caused by misalignment or other dynamic loads. This helps protect the connected equipment from damage and enhances the overall performance and reliability of the rotating system.

In large rotating equipment, where misalignment is more common due to thermal expansion, foundation settling, or other factors, flexible couplings play a critical role in maintaining smooth operation and reducing stress on the machinery. However, it is essential to choose the appropriate type of flexible coupling based on the specific requirements of the application and to regularly inspect and maintain the coupling to ensure optimal performance and longevity.

flexible coupling

How does a flexible coupling impact the overall reliability of connected equipment?

A flexible coupling significantly impacts the overall reliability of connected equipment in several ways:

  • Misalignment Compensation: Flexible couplings can accommodate both angular and parallel misalignment between connected shafts. By allowing for misalignment, the coupling reduces the stress and wear on bearings, seals, and other rotating components. This feature prevents premature failure of these components, contributing to improved reliability and extended equipment lifespan.
  • Vibration Damping: Flexible couplings possess inherent damping properties due to their elastomeric or flexible elements. These elements absorb and dissipate vibrations generated during the operation of machinery. By dampening vibrations, the coupling protects the connected equipment from excessive oscillations, reducing fatigue and preventing mechanical failures. This enhanced vibration control increases the reliability of the system.
  • Shock Load Absorption: In applications with sudden load variations or shock loads, such as in heavy machinery or high-speed equipment, a flexible coupling acts as a shock absorber. It can absorb and dissipate the impact energy, protecting the machinery from damage caused by sudden loads. The ability to absorb shock loads contributes to the overall reliability of the connected equipment.
  • Reduced Wear and Tear: The flexibility of the coupling minimizes stress and wear on rotating equipment. It allows for slight movements and misalignments, reducing friction and stress on bearings and other critical components. This reduction in wear and tear lowers the frequency of maintenance and replacement, increasing the overall reliability of the equipment.
  • Compensation for Thermal Expansion: Temperature changes in machinery can lead to thermal expansion or contraction of shafts. A flexible coupling can compensate for these thermal effects, ensuring that the machinery remains properly aligned even as temperature conditions fluctuate. This compensation prevents binding and misalignment, promoting reliable performance.
  • Protection Against Overloads: Flexible couplings help protect connected equipment from overloads and torsional vibrations. They act as a mechanical fuse, disconnecting the driveline when an overload occurs, thus preventing damage to expensive machinery. This safety feature enhances the overall reliability and reduces the risk of catastrophic failures.
  • Easy Maintenance and Alignment: Flexible couplings are designed for easy installation and alignment. This feature simplifies maintenance procedures, making it easier to inspect and replace couplings when necessary. Properly aligned couplings lead to improved equipment performance and longevity, enhancing overall reliability.

By compensating for misalignment, damping vibrations, absorbing shock loads, reducing wear and tear, and providing other protective features, a flexible coupling significantly improves the reliability of connected equipment. It extends the lifespan of critical components, minimizes downtime, and ensures smooth and efficient operation, making it a valuable component in various industrial applications.

China manufacturer China Manufacturer Flexible Shaft Sprocket Roller Chain Coupling Custom for  China manufacturer China Manufacturer Flexible Shaft Sprocket Roller Chain Coupling Custom for
editor by CX 2024-04-22

China Custom CHINAMFG Customized CNC Motor Jaw Shaft Coupling, Industrial Equipment Flexible Coupling Wholesale

Product Description

Densen Customized CNC Motor Jaw Shaft Coupling, Industrial Equipment Flexible Coupling Wholesale

Product Name   CHINAMFG customized CNC motor jaw shaft coupling, industrial equipment flexible coupling wholesale
DN mm 12~160mm
Rated Torque 25~25000 N·m
Allowable speed 15300~1500 N·m
Material 35CrMo/ZG270/45# steel/Aluminum alloy
Application Widely used in metallurgy, mining, engineering and other fields.

Product show

 

Company Information

HangZhou New CHINAMFG Casting and Forging Company is the sales company of HangZhou CHINAMFG Group of Companies. Features of New CHINAMFG simply summarized as below:

1. Trusted supplier of steel, iron & non-ferrous components;

2. Extensive documented quality program in place. 

3. Castings, forgings, stampings, machining, welding & fabrication services.

4. 9 related factories, over 50 joint-venture sub-contractors.

5. 25+ years of manufacturing experiences, 10+ years of exporting experience

6. 100% of products sold to overseas customers.

7. 50% of customer base is forturne 500 companies. 

 

 

 

Processing support

Casting Service:

Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. 

 New Densen offers multiple investment casting, sand casting, permanent casting, die casting, low pressure casting, ESR casting, lost foam casting, etc. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.01Kg to 150 tons separately. 

 

 

 Forging Service:

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. New CHINAMFG offers open die forging, closed die forging and ring forging services. Material can be steel, iron and non-ferrous. Material can be handled include steel, iron, non-ferrous. Single component weight range is from 0.1Kg to 50,000Kgs.

 

Stamping Service:

Stamping (also known as punching) is the process of placing flat sheet metal in either blank or coil form into a stamping press where a tool and die surface forms the metal into a net shape.

 New Densen-XBL has more than 60 sets stamping equipments, is the designed supplier for several famous bands automotive companies, has the full ability to offer whole processes from blanking, stamping, welding, to electrostatic spraying for CHINAMFG customers.

 

Welding & Fabrication Service: 

Welding Frabrication is the fabrication process of metal structures by cutting, bending, then assembling the components together through welding 

 New CHINAMFG offers manual arc welding ,laser welding and robot welding etc. UT, MPT,RT,PT all are available used for inspection, WPS &PQR (Welding Process Specification& Procedure Qualification Records) before production is available under clients’ requirement.  

 

 Machining Service: 

Machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process. 

New Densen-XBL has more than 60 sets precision machines incl. CNC center, boring, milling, lathing, etc., and more than 300 inspection instruments incl. 3 sets CMM with grade μm. Repeated tolerance can be maintained as 0.02mm. Meanwhile awarded by certificates ISO9001-2008; ISO/TS16949. New Densen-XBL specialized in high precise machining for small-middle-big metal components. 

 

3rd Party Inspection:

 

New Densen worked as 3rd party inspection center besides its sister factories or sub-contractors’ self inspection, Offers process inspection, random inspection and before delivedry inspection services for material, mechanical, inside defects, dimentional, pressure, load, balance, surface treatment,  visual inspection and test. Weekly project follow-up report together with pictures and videos, full quality inspection documentation available. 

New CHINAMFG also designed as 3rd party inspection representative for several customers when their products made by other suppliers. 

 

Application:

FAQQ1. Are you a manufacturer or a trader?

Manufacture, we have 5 own foundries, 4 in ZheJiang Province, 1 in ZHangZhoug Province

Q2. Do you have MOQ request?

1 pcs per order is ok with us , unless material is seldom used.

Q3. If I only have a sample,without drawings, can you quote then manufacture for me?

Just send us the sample, we would have the sample simulated and measured by professional equipment then issue formal drawings for
you , at the same time, we could help you optimize the design according to your demand and related processes’ feasibility.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling deal with backlash and torsional stiffness?

A flexible coupling deals with backlash and torsional stiffness in the following ways:

  • Backlash: Backlash refers to the play or clearance between mating teeth in mechanical systems. In certain couplings, such as gear couplings, some degree of backlash is unavoidable due to the space between the teeth. However, flexible couplings with elastomeric or beam-type elements typically have minimal to no backlash. The flexibility of these elements allows them to maintain continuous contact and transmit torque smoothly without any gaps or play between components.
  • Torsional Stiffness: Torsional stiffness is the ability of a coupling to resist rotational deformation or twisting under torque. It is essential to have adequate torsional stiffness in some applications to ensure accurate motion transmission and responsiveness. Flexible couplings exhibit a balance between torsional stiffness and flexibility. While they allow for a degree of angular and parallel misalignment, they still possess sufficient torsional stiffness to transmit most of the torque efficiently. This characteristic helps maintain the precision of motion control systems and prevents power losses due to deformation.

The design and materials used in flexible couplings contribute to their ability to address both backlash and torsional stiffness effectively. Here are some key features:

  • Elastomeric Elements: Couplings with elastomeric elements, such as rubber or polyurethane, provide excellent flexibility to absorb misalignments and dampen vibrations. They also exhibit minimal backlash as the elastomeric material maintains continuous contact between the coupling components.
  • Beam-Type Couplings: Beam-type couplings use thin metal beams to transmit torque. These couplings offer high torsional stiffness while still accommodating misalignments. The beams can flex slightly under torque, absorbing shocks and compensating for misalignment without compromising torsional rigidity.
  • Composite Couplings: Some flexible couplings use composite materials that combine the advantages of different materials to achieve specific performance characteristics. These composites can offer low backlash and precise torsional stiffness, making them suitable for demanding applications.
  • High-Quality Manufacturing: The precision manufacturing of flexible couplings ensures that components fit together with minimal clearances, reducing backlash. Additionally, high-quality materials contribute to better torsional stiffness and overall performance.

Overall, flexible couplings strike a balance between flexibility to accommodate misalignments and sufficient torsional stiffness to transmit torque efficiently. By effectively addressing backlash and torsional stiffness, these couplings contribute to the smooth and reliable operation of various mechanical systems.

flexible coupling

What are the factors influencing the thermal performance of a flexible coupling?

The thermal performance of a flexible coupling can be influenced by several factors, including:

  • Material Composition: The material used in the construction of the flexible coupling can impact its thermal performance. Different materials have varying thermal conductivity and heat resistance properties, which can affect how well the coupling dissipates heat generated during operation.
  • Operating Speed: The rotational speed of the flexible coupling can influence its thermal behavior. Higher speeds can result in increased friction, leading to more heat generation. Couplings designed for high-speed applications often incorporate features to manage and dissipate heat effectively.
  • Power Transmission: The amount of power transmitted through the flexible coupling plays a role in its thermal performance. Higher power levels can lead to increased heat generation, and the coupling must be designed to handle and dissipate this heat without compromising its integrity.
  • Environmental Conditions: The ambient temperature and surrounding environment can impact the thermal performance of the flexible coupling. In high-temperature environments, the coupling may need to dissipate heat more efficiently to avoid overheating.
  • Lubrication: Proper lubrication is essential for managing friction and heat generation within the coupling. Insufficient or inappropriate lubrication can lead to increased wear and heat buildup.
  • Design and Geometry: The design and geometry of the flexible coupling can influence its thermal performance. Some coupling designs incorporate features such as cooling fins, ventilation, or heat sinks to enhance heat dissipation.
  • Load Distribution: The distribution of loads across the flexible coupling can affect how heat is generated and dissipated. Proper load distribution helps prevent localized heating and reduces the risk of thermal issues.

Manufacturers consider these factors during the design and selection of flexible couplings to ensure they can handle the thermal demands of specific applications. Proper application and maintenance of the flexible coupling are also essential for optimizing its thermal performance and overall efficiency.

flexible coupling

What industries commonly use flexible couplings for power transmission?

Flexible couplings are widely used in various industries for power transmission and motion control applications. Their ability to accommodate misalignment, dampen vibrations, and protect equipment from shock loads makes them valuable components in many industrial processes. Here are some of the industries that commonly utilize flexible couplings:

  • Manufacturing: Flexible couplings are extensively used in manufacturing industries such as automotive, aerospace, electronics, and consumer goods production. They play a critical role in transmitting power between motors and various machinery, including conveyor systems, robots, and assembly lines.
  • Oil and Gas: In the oil and gas industry, flexible couplings are used in pumps, compressors, turbines, and generators. They help transfer power in offshore platforms, refineries, pipelines, and drilling operations while compensating for the dynamic nature of these applications.
  • Power Generation: Power plants, both conventional and renewable, rely on flexible couplings to transmit power from turbines and generators to electrical generators. They are used in coal-fired, natural gas, nuclear, hydroelectric, and wind power plants.
  • Mining: In mining operations, flexible couplings are employed in various equipment, including conveyor systems, crushers, and large industrial pumps. They are designed to withstand the heavy loads and harsh conditions commonly found in mining environments.
  • Marine: Flexible couplings are essential in marine propulsion systems, connecting engines to propellers or water jets. They also find use in shipboard machinery, auxiliary systems, and offshore applications.
  • Pulp and Paper: The pulp and paper industry relies on flexible couplings in machinery used for wood processing, pulp production, papermaking, and printing processes.
  • Chemical and Petrochemical: In chemical plants and petrochemical refineries, flexible couplings are utilized in pumps, mixers, agitators, and other rotating equipment to ensure efficient power transmission and protect sensitive machinery.
  • Construction: The construction industry employs flexible couplings in various equipment, such as concrete pumps, cranes, excavators, and drilling machines.
  • Water and Wastewater: Flexible couplings are used in water treatment plants, wastewater facilities, and irrigation systems to transfer power between motors and pumps.
  • Agriculture: In agricultural machinery, flexible couplings are utilized in tractors, harvesters, and irrigation systems, enabling efficient power transmission and operation.

The versatility and adaptability of flexible couplings make them indispensable components in a wide range of industries, contributing to increased equipment reliability, reduced downtime, and improved overall system performance.

China Custom CHINAMFG Customized CNC Motor Jaw Shaft Coupling, Industrial Equipment Flexible Coupling Wholesale  China Custom CHINAMFG Customized CNC Motor Jaw Shaft Coupling, Industrial Equipment Flexible Coupling Wholesale
editor by CX 2024-04-17

China manufacturer Custom Coupler Connector Flexible Split Flange Rigid Motor Guide Drive Shaft Coupling

Product Description

 

Certification ISO9001:2018;SGS;TS16949
Quality 

CNC machine, CNC Turning, CNC Milling, CNC center machine,

auto lathe machine, Wire-cutting Machine
, CNC Laser cutting machines, CNC bending machines, 

CNC punching machines, CNC bending machines

CNT stamping machine, CNC/auto lathe machine,

Drilling machine, Hydraulic machine, Riveting machine,

Tapping machine, welding machine, Film attaching machine, etc.

Materials

Aluminum, Steel, SPCC, SGCC,SECC,

SPTE, Stainless steel, Brass, Copper, 

Bronze, ABS, PC, PO, POM, Nylon,  etc.

Surface finish

Anodized, Oxide, Plating, Brushing, Polishing, Blackened, Powder coating, 

Sandblasting, Laser engraving Zn-plating, Ni-plating, Cr-plating, Tin-plating,

copper-plating, the wreath oxygen resin spraying, the heat disposing,

hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated,

blue-black zinc-plated, rust preventive oil, titanium alloy galvanized,

silver plating, plastic, electroplating, anodizing, etc

Inspection Equipment

CMM, Projection, Calipers, Micro caliper, Thread Micro caliper, 

Pin gauge, Caliper gauge, Pass meter, Pass meter, etc.

Drawing formation PDF, CAD/DWG/DXF, IGS/STP etc.

HangZhou CHINAMFG Industrial Co., Ltd. is a comprehensive factory that specialized in fasteners, CNC parts, stamping parts, machinery parts, and so on. Since the establishment of the company, we have passed ISO9001: 2018, SGS, TS16949.
Our factory covers an area of 5,000 square CHINAMFG and has 58 employees, including 5 R & D personnel and 5 quality inspection personnel.
Major areas of service include automotive, bicycle and motorcycle, industrial automation, agricultural equipment, digital electronics, medical equipment, and so on.
Looking CHINAMFG to your cooperation.

1. We have Specialized QC testers to check the products quality according to customers’ needs.

2. We have IQC to check the dimensions and surface of the incoming material.

3. We have PQC to inspect  full-course during the processing.

4. We have FQC to inspect all the plating products from outsides and make the 100% inspection before the shipments.

FAQ:

 

Q1: Why choose ZheJiang n?
To provide our customers with first-class services in the supply of quality screws minimizing costs.

 

Q2: How is quality ensured?
All our processes strictly adhere to ISO9001:2018 procedures. We have strict quality control from producing to delivery. Our company had strong technology support, 80% of our colleagues are master or bachelor’s degree. We have cultivated a group of managers who are familiar with product quality , good at modern concept of management.

 

Q3: Can You Strictly Follow The Tolerance on The Drawing And Meet The High Precision?
Yes, we can, we can provide high precision parts and make the parts as your drawing.

 

Q4: How should I order and make payment?
By T/T, for samples 100% with the order; for production, 30% paid for deposit by T/T before production arrangement, the balance to be paid before shipment. negotiation accepted.

Q5: What’s your Delivery Time?
Standard parts: 7-20days
Non-standard parts: 15-25days
We will make the delivery as soon as possible with the guarantee quality

 

Q6:How to Custom-made (OEM/ODM)?
If you have a new product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.

Q7:Which mode of transport would be better?
In general, the product are heavy, we advice to make delivery by sea, Also we respect your views of other transportation as well.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Materials Used in Manufacturing Flexible Flange Couplings and Their Impact on Performance

Flexible flange couplings are commonly manufactured using various materials, each offering specific properties that can impact their performance in mechanical power transmission systems. The choice of material depends on factors such as application requirements, operating conditions, torque and speed demands, and environmental considerations. Some of the commonly used materials and their impact on performance are as follows:

  1. Elastomeric Materials (Rubber, Polyurethane, etc.): Elastomeric materials like rubber and polyurethane are widely used in flexible flange couplings. These materials provide excellent flexibility, which allows them to handle misalignment and dampen vibrations effectively. They can also absorb shocks and reduce transmission of torsional vibrations between shafts, contributing to smoother operation and reduced wear on connected machinery. However, elastomeric couplings may have limitations in high-temperature or aggressive chemical environments.
  2. Metal Alloys (Steel, Stainless Steel, etc.): Metal alloys, such as steel and stainless steel, are preferred when higher torque and load-carrying capacities are required. They offer superior strength and durability, making them suitable for heavy-duty applications. Stainless steel is particularly resistant to corrosion and is often used in harsh or corrosive environments. Metal couplings may not provide as much flexibility as elastomeric ones, but they compensate with higher torque transmission capabilities and increased reliability.
  3. Composite Materials (Fiberglass, Carbon Fiber, etc.): Composite materials are gaining popularity in various industries due to their unique combination of properties. They can offer a balance of flexibility and strength, making them suitable for applications where both misalignment accommodation and high torque transmission are necessary. Composite couplings are often lightweight, which can be advantageous for reducing the overall weight of rotating systems.
  4. Plastics (Nylon, Delrin, etc.): Plastics are sometimes used in less demanding applications where cost-effectiveness and low friction are essential. While they may not provide the same level of performance as elastomeric or metal couplings, they can still serve adequately in specific settings with lower torque and speed requirements.

The choice of material for flexible flange couplings must consider factors such as application-specific needs, environmental conditions, temperature range, chemical exposure, and maintenance requirements. It is essential to select a coupling material that matches the demands of the application to ensure optimal performance, longevity, and reliability.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Flexible Flange Coupling in Mechanical Power Transmission

A flexible flange coupling is a type of coupling used to connect two shafts and transmit mechanical power from one shaft to another. It is designed to accommodate misalignment, parallel, angular, and axial, between the connected shafts. The coupling consists of two flanges with interlocking teeth or ridges on their mating faces, and a flexible element, often made of elastomeric material, positioned between the flanges.

The function of a flexible flange coupling in mechanical power transmission is as follows:

  1. Compensation for Misalignment: One of the primary functions of a flexible flange coupling is to compensate for misalignment between the shafts. Misalignment can occur due to various factors, such as manufacturing tolerances, thermal expansion, or vibrations. The flexible element allows the flanges to move relative to each other, accommodating both angular and parallel misalignments without imposing significant loads on the connected machinery.
  2. Shock Absorption: The flexible element in the coupling acts as a shock absorber, dampening sudden shocks and vibrations that may arise from the equipment or system. This helps protect the machinery from damage and minimizes wear and tear, enhancing the overall service life of the system.
  3. Torsional Flexibility: Flexible flange couplings offer torsional flexibility, allowing them to transmit torque smoothly between the shafts, even when the two shafts are not perfectly aligned. This capability is essential in applications where there are frequent starts, stops, or changes in load, as it reduces the risk of stress concentration and premature failure.
  4. Isolation of Vibrations: Vibrations generated in one shaft due to imbalances, misalignment, or other factors can be isolated from the other shaft by the flexible element, preventing the vibrations from propagating throughout the entire system and reducing noise levels.
  5. Easy Installation and Maintenance: Flexible flange couplings are relatively easy to install and maintain. The split design of the flanges allows them to be assembled around the shafts without the need to disassemble the entire system. This feature simplifies installation and reduces downtime during maintenance.

Conclusion: Flexible flange couplings play a crucial role in mechanical power transmission by providing a flexible and reliable connection between rotating shafts. Their ability to compensate for misalignment, absorb shocks, transmit torque smoothly, and isolate vibrations makes them suitable for a wide range of applications in various industries.

China manufacturer Custom Coupler Connector Flexible Split Flange Rigid Motor Guide Drive Shaft Coupling  China manufacturer Custom Coupler Connector Flexible Split Flange Rigid Motor Guide Drive Shaft Coupling
editor by CX 2024-04-12

China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)

Product Description

Product Description

      FCL Coupling/Shaft Coupling /Pin & Bush Coupling /FCL Flexible Coupling/NBK FCL Coupling is widely used for its compacts designing, easy installation, convenient maintenance, small and light weight. 
     As long as the relative displacement between shafts is kept within the specified tolerance, couplings will operate the best function and have a longer working life.
     Thus it is greatly demanded in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills.

Technical Date

KASIN No. A d L C1 C2 B F1 F2 n a M t   PartsNo. Max. Torque Max.R.P.M Eccentricity Angularity End-Play
FCL 1/8822 0571 -57152031              Fax: 86~/8822 0571 -57152030
 
Http://kasinchain   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Contribution of Flexible Flange Couplings to Noise Reduction and Smooth Operation

Flexible flange couplings play a crucial role in reducing noise and ensuring smooth operation in mechanical power transmission systems. They achieve this through the following mechanisms:

  1. Vibration Damping: One of the primary functions of flexible flange couplings is to dampen vibrations that occur during operation. These couplings utilize materials with inherent damping properties, such as elastomers, to absorb and dissipate vibrations generated by rotating machinery. By reducing vibrations, flexible flange couplings help minimize noise and prevent potential resonance issues that can lead to equipment failure or increased wear.
  2. Misalignment Compensation: Flexible flange couplings are designed to accommodate both angular and axial misalignments between connected shafts. When shafts are misaligned, it can result in uneven forces and vibrations that contribute to noise and mechanical stress. By allowing some degree of misalignment, these couplings prevent rigid transmission of vibrations and reduce the impact of misalignment on connected machinery, resulting in smoother operation.
  3. Shock Absorption: In industrial applications where machinery encounters sudden shocks or impact loads, flexible flange couplings act as shock absorbers. The elastomeric or flexible elements of the couplings can absorb and dissipate energy from shocks, preventing it from propagating through the system. This shock absorption capability helps maintain stable and quieter operation, protecting components from damage caused by sudden loads.
  4. Reduced Backlash: Backlash refers to the slight play or movement that can occur in couplings when the rotational direction changes. Flexible flange couplings often exhibit minimal backlash due to their design and materials. This characteristic results in smoother engagement between the shafts during reversals, reducing noise and preventing jerky movements that could impact equipment performance.
  5. Smooth Torque Transmission: Flexible flange couplings efficiently transmit torque from one shaft to another while allowing for a certain degree of flexibility. This smooth transmission of torque prevents sudden torque spikes that could lead to noise generation and mechanical stresses.

By combining these features, flexible flange couplings contribute significantly to noise reduction and ensuring smooth and reliable operation of rotating machinery. Their ability to absorb vibrations, compensate for misalignments, and dampen shocks makes them essential components in various industrial applications, where noise reduction and smooth operation are critical for performance and safety.

flexible flange coupling

Flexible Flange Couplings for Pumps, Compressors, and Marine Propulsion Systems

Yes, flexible flange couplings are suitable for use in pumps, compressors, and marine propulsion systems. These couplings offer several advantages that make them well-suited for such applications:

  • Misalignment Tolerance: Pumps, compressors, and marine propulsion systems often experience misalignments due to thermal expansion, vibration, or other factors. Flexible flange couplings can accommodate both angular and axial misalignments, ensuring smooth operation and reducing stress on the connected equipment.
  • Vibration Damping: These coupling types are designed to dampen vibrations, which is crucial in pump and compressor applications where excessive vibration can lead to equipment damage and premature wear. The vibration damping properties help improve the overall system’s reliability and reduce maintenance requirements.
  • High Torque Transmission: Pumps, compressors, and marine propulsion systems often require high torque transmission to handle heavy loads and provide efficient power transfer. Flexible flange couplings are capable of transmitting high torques, making them suitable for these demanding applications.
  • Electrical Isolation: In some cases, electrical isolation between shafts is necessary to prevent the transfer of electrical currents or static electricity. Flexible flange couplings made from insulating materials can provide this isolation, ensuring safe and efficient operation in certain pump and compressor applications.
  • Corrosion Resistance: Marine propulsion systems are exposed to harsh environments with high humidity and saltwater exposure. Flexible flange couplings made from materials such as stainless steel or corrosion-resistant alloys can withstand these conditions, offering extended service life and reliable performance.
  • Easy Installation and Maintenance: Flexible flange couplings are relatively easy to install and require minimal maintenance, making them attractive choices for various industrial applications, including pumps, compressors, and marine propulsion systems.
  • Compact Design: Space may be limited in pumps, compressors, and marine propulsion systems. Flexible flange couplings have a compact design, which helps in integrating them into the equipment without significant modifications.

Overall, flexible flange couplings are versatile and can be customized to suit specific requirements, making them well-suited for use in pumps, compressors, and marine propulsion systems. However, it’s essential to consider factors such as torque capacity, material compatibility, operating conditions, and system requirements to select the most appropriate coupling for each application.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)  China Custom FCL Quick Coupling Type 280 / Flexible Rubber Flange Shaft Couplings Bolt (PB280)
editor by CX 2024-04-10

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling flange coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

How Does a Flange Coupling Handle Angular, Parallel, and Axial Misalignment?

A flange coupling is designed to accommodate various types of misalignment that may occur between two shafts. Here’s how it handles different types of misalignment:

  • Angular Misalignment: Flange couplings can handle angular misalignment by allowing a slight flexing or bending of the flexible elements. The coupling’s flexible components, such as elastomeric or metallic elements, can bend and compensate for angular misalignment between the shafts. This flexibility ensures that the coupling can transmit torque smoothly even when the shafts are not perfectly aligned in a straight line.
  • Parallel Misalignment: Flange couplings can also accommodate parallel misalignment between the shafts. When the two shafts are slightly offset in a parallel direction, the flexible elements in the coupling can move laterally to accommodate this misalignment. This lateral movement helps prevent excessive forces and wear on the coupling and connected equipment, ensuring efficient power transmission even in slightly misaligned conditions.
  • Axial Misalignment: Axial misalignment refers to the situation when two shafts are displaced along their common axis. Flange couplings are not specifically designed to handle large axial misalignment. However, certain types of flange couplings may have limited axial movement capabilities due to the flexibility of their components. In some cases, an additional feature like an end float or sliding flange design may be incorporated to accommodate limited axial movement.

It is important to note that while flange couplings can handle a certain degree of misalignment, excessive misalignment can lead to premature wear and failure of the coupling. Regular maintenance and proper alignment of the shafts are essential to ensure the coupling’s optimal performance and longevity.

flange coupling

How Does a Flange Coupling Help in Power Transmission Efficiency?

A flange coupling plays a crucial role in improving power transmission efficiency in mechanical systems. It efficiently transfers power from one shaft to another while maintaining the alignment and minimizing energy losses. Here’s how flange couplings contribute to power transmission efficiency:

1. Direct Power Transfer: Flange couplings provide a direct connection between the driving and driven shafts, ensuring a solid and reliable power transfer without the need for intermediate components. This direct coupling minimizes power losses that can occur in systems with multiple components and connections.

2. Rigid and Precise Connection: Rigid flange couplings offer a precise and firm connection between shafts, minimizing angular and parallel misalignments. By reducing misalignment, energy losses due to friction and vibrations are minimized, leading to more efficient power transmission.

3. Absence of Slippage: Flange couplings are designed to provide a secure and non-slip connection between shafts. Unlike some other coupling types that might experience slippage under heavy loads or during acceleration, flange couplings maintain constant power transmission without loss of torque.

4. High Load-Carrying Capacity: Flange couplings are capable of handling high torque and axial loads, making them suitable for heavy-duty applications. The ability to handle these loads without deformation ensures efficient power transmission even in demanding industrial settings.

5. Minimal Maintenance: Flange couplings are generally low-maintenance components. Once properly installed, they require minimal attention, reducing downtime and enhancing overall system efficiency.

6. Balancing and Vibration Damping: Some flange coupling designs, such as flexible and torsionally flexible couplings, provide additional benefits like vibration damping and torsional flexibility. These features help to absorb shocks and vibrations, ensuring a smoother power transmission and protecting connected equipment from damage.

7. Selection of Appropriate Flange Type: Choosing the right type of flange coupling for a specific application is crucial for optimal power transmission efficiency. Different flange designs offer varying levels of flexibility and alignment capabilities, allowing engineers to select the most suitable coupling based on the system requirements.

In summary, flange couplings facilitate efficient power transmission by maintaining alignment, reducing energy losses, and providing a robust and reliable connection between shafts. Properly selected and installed flange couplings help improve the overall efficiency and performance of mechanical systems.

flange coupling

Materials Used in Manufacturing Flange Couplings

Flange couplings are manufactured using various materials, each offering specific properties and advantages. The choice of material depends on factors such as application requirements, environmental conditions, and cost considerations. Here are some commonly used materials in manufacturing flange couplings:

  • 1. Steel: Steel is one of the most common materials for flange couplings. It offers excellent strength, durability, and resistance to wear. Steel couplings are suitable for a wide range of applications and can handle high torque and heavy loads.
  • 2. Stainless Steel: Stainless steel is chosen for its superior corrosion resistance, making it ideal for applications where the coupling is exposed to moisture, chemicals, or aggressive substances. Stainless steel flange couplings are common in industries such as food processing, pharmaceuticals, and marine.
  • 3. Cast Iron: Cast iron couplings are known for their excellent strength and vibration-damping characteristics. They are often used in industrial settings, including pumps, compressors, and conveyor systems.
  • 4. Aluminum: Aluminum couplings are lightweight and suitable for applications where weight is a concern. They are commonly used in industries such as aerospace and automotive.
  • 5. Brass: Brass couplings offer good corrosion resistance and electrical conductivity. They are used in specific applications that require these properties.
  • 6. Bronze: Bronze couplings are valued for their high strength, corrosion resistance, and resistance to wear. They are commonly used in marine and heavy machinery applications.
  • 7. Plastic: Plastic couplings, such as nylon or polyurethane, are used in applications where weight, non-conductivity, and chemical resistance are critical factors.
  • 8. Composite Materials: Some modern flange couplings may use composite materials that combine different properties, such as strength, flexibility, and corrosion resistance.

When selecting the material for a flange coupling, it is essential to consider factors such as load capacity, temperature range, chemical exposure, and the specific demands of the application. Proper material selection ensures that the flange coupling performs optimally and has a long service life in its intended environment.

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  flange couplingChina Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  flange coupling
editor by CX 2024-04-09

China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings

Product Description

Product Details
 

General Products Application/Service Area Metal Parts Solution for Vehicle, Agriculture machine, Construction Machine, transportation equipment, Valve and Pump system. E.g.
Engine bracket, truck chassis bracket, gear box , gear housing , gear cover, shaft, spline shaft , pulley, flange, connection
pipe, pipe, hydraulic valve , valve housing ,Fitting , flange, wheel, flywheel, oil pump housing, starter housing, coolant pump
housing, transmission shaft , transmission gear, sprocket, chains etc.
Process for Casting Iron Sand Casting , Resin Sand Casting, Green Sand Casting, Shell Molding, Automatic Molding,
Casting Tolerance CT9-10 for Machine Molding Process,
CT8-9 for Shell Molding and Lost Foam Molding Casting Process
CT10-11 for Manual Molding Sand casting Process
Applicable Material Ductile Iron, Grey Iron Casting, or as customer request.
Applicable Finish Surface Treatment Shot/sand blast, polishing, Powder coating, ED- Coating, etc

Product Show

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Materials Used in Manufacturing Flexible Flange Couplings and Their Impact on Performance

Flexible flange couplings are commonly manufactured using various materials, each offering specific properties that can impact their performance in mechanical power transmission systems. The choice of material depends on factors such as application requirements, operating conditions, torque and speed demands, and environmental considerations. Some of the commonly used materials and their impact on performance are as follows:

  1. Elastomeric Materials (Rubber, Polyurethane, etc.): Elastomeric materials like rubber and polyurethane are widely used in flexible flange couplings. These materials provide excellent flexibility, which allows them to handle misalignment and dampen vibrations effectively. They can also absorb shocks and reduce transmission of torsional vibrations between shafts, contributing to smoother operation and reduced wear on connected machinery. However, elastomeric couplings may have limitations in high-temperature or aggressive chemical environments.
  2. Metal Alloys (Steel, Stainless Steel, etc.): Metal alloys, such as steel and stainless steel, are preferred when higher torque and load-carrying capacities are required. They offer superior strength and durability, making them suitable for heavy-duty applications. Stainless steel is particularly resistant to corrosion and is often used in harsh or corrosive environments. Metal couplings may not provide as much flexibility as elastomeric ones, but they compensate with higher torque transmission capabilities and increased reliability.
  3. Composite Materials (Fiberglass, Carbon Fiber, etc.): Composite materials are gaining popularity in various industries due to their unique combination of properties. They can offer a balance of flexibility and strength, making them suitable for applications where both misalignment accommodation and high torque transmission are necessary. Composite couplings are often lightweight, which can be advantageous for reducing the overall weight of rotating systems.
  4. Plastics (Nylon, Delrin, etc.): Plastics are sometimes used in less demanding applications where cost-effectiveness and low friction are essential. While they may not provide the same level of performance as elastomeric or metal couplings, they can still serve adequately in specific settings with lower torque and speed requirements.

The choice of material for flexible flange couplings must consider factors such as application-specific needs, environmental conditions, temperature range, chemical exposure, and maintenance requirements. It is essential to select a coupling material that matches the demands of the application to ensure optimal performance, longevity, and reliability.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings  China Custom Ductile Iron Casting Car Accessories Flexible Flange Couplings Shaft Couplings
editor by CX 2024-04-08

China Custom Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020

Product Description

Product Description

     The roller chain coupling is a flexible coupling of amazingly simple construction. It consists of a combination of 1 coupling chain and a pair of coupling sprockets. Flexible and strong, the  roller chain coupling is suitable for a wide range of coupling applications.
     Roller chain coupling can used for the environment which with high temperature, wet and dirty conditions. It is not suitable for the occasion which is in high speed and with strong impact load. Roller chain coupling should working with excellent lubrication and protection cover conditions. 
The common chain coupling includes double roller chain coupling, single row roller chain coupling, tooth shape chain coupling, nylon chain coupling. Its scale is compact and its weight is light. But roller chain coupling don’t have high requirement to installation precision. 
     Generally speaking, it is usually in long service life. Production line equipment for various kinds of frozen food and dehydrated vegetables should transport by stainless steel chain. Roller chains are widely applied to household, industrial and agricultural machinery, includes conveyor, drawing machine, printing machine, automobile, motorcycle and bicycle.

Main Features
1.Simple structure,easy assembly and disassembly.
2.Light weight,and long service life.
3.Have a certain ability to compensate for installation less precision.
4.Suitable for high temperature,wet and dusty industrial environment.
5.Can not for high speed,violent vibration.

Techncial Date

KASIN No. Chain Type d L G S D H C Weight/Kg A B Casing Weight/Kg
3012 06B-2 × 12 12~16 64.8 29.8 5.2 35 45 10.2 0.31 69 63 0.22
4012 40-2 × 12 12~22 79.4 36 7.4 35 62 14.4 0.73 77 72 0.3
4014 40-2 × 14 12~28 79.4 36 7.4 43 69 14.4 1.12 84 75 0.31
4016 40-2 × 16 14~32 87.4 40 7.4 50 77 14.4 1.5 92 72 0.35
5014 50-2 × 14 15~35 99.7 45 9.7 55 86 18.1 2.15 101 85 0.47
5016 50-2 × 16 16~40 99.7 45 9.7 62 93 18.1 2.75 110 87 0.5
5018 50-2 × 18 16~45 99.7 45 9.7 70 106 18.1 3.6 122 85 0.6
6018 60-2 × 18 20~56 123.5 56 11.5 85 127 22.8 6.55 147 105 1.2
6571 60-2 × 20 20~60 123.5 56 11.5 1/8822 0571 -57152031              Fax: 86~/8822 0571 -57152030

 
Http://kasinchain   

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do you install and align a flexible coupling properly to ensure optimal performance?

Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:

1. Pre-Installation Inspection:

Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling’s size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.

2. Shaft Preparation:

Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.

3. Coupling Hub Installation:

Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.

4. Alignment:

Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer’s alignment specifications and tolerance limits.

5. Tightening Fasteners:

Once the shafts are properly aligned, tighten the coupling’s fasteners to the manufacturer’s recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.

6. Run-Out Check:

After installation, perform a run-out check to verify that the coupling’s rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling’s performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.

7. Lubrication:

Ensure that the flexible coupling is adequately lubricated, following the manufacturer’s recommendations. Proper lubrication reduces friction and wear, enhancing the coupling’s efficiency and reliability.

8. Periodic Inspection and Maintenance:

Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.

Summary:

Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer’s guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.

flexible coupling

What are the differences between flexible couplings and rigid couplings in terms of performance?

Flexible couplings and rigid couplings are two distinct types of couplings used in mechanical systems, and they differ significantly in terms of performance and applications.

  • Torsional Flexibility: The primary difference between flexible and rigid couplings lies in their ability to handle misalignments and torsional flexibility. Flexible couplings are designed with elements, such as elastomeric inserts or metal bellows, that can deform or twist to accommodate shaft misalignments, angular offsets, and axial movements. On the other hand, rigid couplings do not have any flexibility and maintain a fixed connection between the shafts, which means they cannot compensate for misalignment.
  • Misalignment Compensation: Flexible couplings can absorb and mitigate misalignment between shafts, reducing stress and wear on connected components. In contrast, rigid couplings require precise alignment during installation, and any misalignment can lead to increased loads on the shafts and bearings, potentially leading to premature failure.
  • Vibration Damping: Flexible couplings, especially those with elastomeric elements, offer damping properties that can absorb and dissipate vibrations. This damping capability reduces the transmission of vibrations and shocks through the drivetrain, improving the overall system performance and protecting connected equipment. Rigid couplings, being solid and without damping elements, do not provide this vibration damping effect.
  • Backlash: Flexible couplings can have some degree of backlash due to their flexibility, particularly in certain designs. Backlash is the play or free movement between connected shafts. In contrast, rigid couplings have minimal or no backlash, providing a more precise and immediate response to changes in rotational direction.
  • Torque Transmission: Rigid couplings are more efficient in transmitting torque since they do not have any flexible elements that can absorb some torque. Flexible couplings, while capable of transmitting substantial torque, may experience some power loss due to the deformation of their flexible components.
  • Applications: Flexible couplings are widely used in applications that require misalignment compensation, damping, and shock absorption, such as pumps, motors, and industrial machinery. On the other hand, rigid couplings are used in situations where precise alignment is critical, such as connecting shafts of well-aligned components or shafts that require synchronous operation, like in some encoder applications.

In summary, flexible couplings excel in applications where misalignment compensation, vibration damping, and shock absorption are required. They are more forgiving in terms of alignment errors and can accommodate dynamic loads. Rigid couplings, on the other hand, are used in situations where precise alignment and zero backlash are essential, ensuring direct and immediate power transmission between shafts.

flexible coupling

Can flexible couplings be used in corrosive or harsh environments?

Yes, flexible couplings can be designed and selected to be used in corrosive or harsh environments. The choice of materials and coatings plays a crucial role in ensuring the coupling’s durability and performance under challenging conditions.

Corrosion-Resistant Materials:

In corrosive environments, it is essential to use materials that can withstand chemical attacks and oxidation. Stainless steel, specifically grades like 316 or 17-4 PH, is commonly chosen for flexible couplings in such situations. Stainless steel offers excellent corrosion resistance, making it suitable for applications where the coupling may come into contact with corrosive substances or moisture.

Special Coatings:

For certain harsh environments, coupling manufacturers may apply special coatings to enhance the coupling’s corrosion resistance. Examples of coatings include zinc plating, nickel plating, or epoxy coatings. These coatings provide an additional layer of protection against corrosive agents and help extend the coupling’s lifespan.

Sealed Designs:

In environments where the coupling is exposed to contaminants like dust, dirt, or moisture, sealed designs are preferred. Sealed flexible couplings prevent these substances from entering the coupling’s internal components, thus reducing the risk of corrosion and wear. The sealed design also helps to maintain the coupling’s performance over time in challenging conditions.

High-Temperature Applications:

For harsh environments with high temperatures, flexible couplings made from high-temperature resistant materials, such as certain heat-resistant stainless steels or superalloys, can be used. These materials retain their mechanical properties and corrosion resistance even at elevated temperatures.

Chemical Resistance:

For applications where the coupling might encounter chemicals or solvents, it is essential to select a coupling material that is chemically resistant. This prevents degradation and ensures the coupling’s integrity in such environments.

Specialized Designs:

In some cases, where the environment is exceptionally harsh or unique, custom-designed flexible couplings may be necessary. Engineering a coupling to meet the specific demands of the environment ensures optimal performance and reliability.

Consultation with Manufacturers:

When considering flexible couplings for corrosive or harsh environments, it is advisable to consult with coupling manufacturers or engineering experts. They can provide valuable insights and recommend suitable materials, coatings, and designs based on the specific operating conditions.

Summary:

Flexible couplings can indeed be used in corrosive or harsh environments, provided the appropriate materials, coatings, and designs are chosen. Stainless steel, sealed designs, and special coatings are some of the solutions that enhance the coupling’s corrosion resistance and performance. It is essential to consider the specific environment and application requirements when selecting a flexible coupling to ensure optimal functionality and durability in challenging conditions.

China Custom Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020  China Custom Machinery Part Roller Chain Coupling Aluminum Case with Sprockets Shaft Flexible Coupling Kc 4012-10020
editor by CX 2024-04-08

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Where to Find Reputable Suppliers or Manufacturers of Flexible Flange Couplings for Your Specific Power Transmission Needs?

When looking for reputable suppliers or manufacturers of flexible flange couplings, consider the following steps:

  1. Online Research: Start by conducting online research to identify companies that specialize in power transmission components, including flexible flange couplings. Look for manufacturers with a strong reputation, positive customer reviews, and a history of delivering high-quality products.
  2. Industry Directories: Industry-specific directories and trade publications often feature listings of suppliers and manufacturers. These directories can be a valuable resource to find companies that offer flexible flange couplings tailored to your industry’s needs.
  3. Trade Shows and Exhibitions: Attend trade shows and exhibitions related to power transmission, where you can meet suppliers in person, examine product samples, and discuss your specific requirements.
  4. Referrals and Recommendations: Seek referrals or recommendations from industry peers, colleagues, or professionals who have experience with flexible flange couplings. Their insights can lead you to reliable suppliers.
  5. Supplier Websites: Visit the websites of potential suppliers to gather detailed information about their products, manufacturing processes, certifications, and capabilities. Look for suppliers with a comprehensive product range and customization options.
  6. Quality and Certifications: Verify if the supplier follows industry standards and has relevant certifications such as ISO, ASME, or API. These certifications demonstrate their commitment to quality and compliance.
  7. Technical Support: Evaluate the technical support and customer service provided by the supplier. A reliable supplier should be responsive to your queries, offer guidance on selecting the right coupling, and provide after-sales support.
  8. Sample and Testing: Request samples of the flexible flange couplings to evaluate their quality and suitability for your application. Some suppliers may also offer testing services to validate the performance of their products.
  9. Price and Delivery: Obtain quotes from multiple suppliers to compare prices, delivery times, and shipping costs. However, prioritize quality and reliability over cost alone.

By following these steps, you can find reputable suppliers or manufacturers that can meet your specific power transmission needs with high-quality flexible flange couplings. Remember to conduct thorough research and consider factors beyond price to ensure you choose a supplier that can provide durable and efficient couplings for your application.

flexible flange coupling

Selecting the Right Flexible Flange Coupling for Specific Machinery or Equipment

Choosing the appropriate flexible flange coupling involves considering several factors to ensure optimal performance and longevity. Here are the key steps to guide the selection process:

  1. Load and Torque Requirements: Determine the maximum torque and load that the coupling will experience during operation. Select a coupling that can handle these loads without exceeding its rated capacity.
  2. Misalignment Compensation: Assess the expected misalignment between the shafts. Different coupling types have varying degrees of misalignment capabilities, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the specific misalignment in your application.
  3. Speed: Consider the rotational speed of the machinery or equipment. High-speed applications may require couplings with good balance and vibration-damping properties to avoid resonance and ensure smooth operation.
  4. Vibration Damping: Evaluate the level of vibration present in the system. If vibration damping is critical, elastomeric couplings or disc couplings may be more suitable choices.
  5. Space Constraints: Take into account the available space for the coupling. Some couplings have a compact design, making them suitable for tight spaces.
  6. Environmental Factors: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a coupling material that can withstand these conditions without corrosion or degradation.
  7. Serviceability: Assess the ease of installation and maintenance. Some couplings allow for easy replacement without disassembling the connected machinery.
  8. Cost: Compare the cost of different coupling options and balance it with the required performance and reliability for your application.

Conclusion: Properly selecting a flexible flange coupling involves understanding the specific requirements of the machinery or equipment, as well as the operating conditions it will be subjected to. By considering factors such as load, misalignment, speed, and environmental conditions, you can make an informed decision and choose the right coupling that ensures efficient power transmission and minimizes the risk of premature failure.

China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling  China Custom Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling
editor by CX 2024-03-27