Tag Archives: jaw couplings

China Standard Flexible Jaw Couplings Spider Couplings Industry

Product Description

Product Description

* Compact designing, easy installation
.
* Convenient maintenance, small size and light weight .

* Widely used in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills .

* Permittable relative displacement :
1) Radial displacement :0.2~0.6 mm
2) Angle displacement :0°30~1°30

 

 

 

Packing & Delivery

Packaging Pictures of Worm Gear Reduce and Helical Geared Motor

 

Inner Packing: PP bag with carton;
Outer Packing: Carton boxes and wooden cases;
Leadtime: 20-30 days CHINAMFG order confirm.
 

About Us

Welcome to CHINAMFG Group, China’s leading gearbox manufacturer since 1976. Our journey, spHangZhou over 4 decades, has established us as a benchmark of CHINAMFG in the power transmission industry.
 

We proudly made history in the 1980s by exporting the first China-made reducer and have since maintained our status as China’s top gearbox exporter.Today, we proudly export 70% of our products to more than 40 countries, including key markets like Italy, Germany, the USA, Spain, Brazil, Argentina, Turkey, and India.
 

Our extensive product range includes worm gear reducers, helical gearboxes, shaft-mounted reducers, helical bevel gearboxes, and slewing drives.These products are vital across various sectors, from industrial production equipment, power, and mining to metallurgy, agriculture, construction, and marine, as well as in the burgeoning clean energy sector.
 

Our team of experts, among the world’s best, upholds the highest standards for both standard and OEM products. Driven by innovation and cutting-edge technology, we prioritize quality and our customers’ needs. Our state-of-the-art facilities, equipped with the latest machinery and a team of seasoned professionals, ensure consistent quality and impressive daily output. We’re proud to produce 4,000 units daily, totaling over 1.2 million units annually.
 

We cordially invite you to visit us and witness first hand why CHINAMFG Group is the gem of China’s gearbox manufacturing. Seeing is believing, and we eagerly anticipate demonstrating our expertise and craftsmanship. Join us in driving the future forward.
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How do you install and align a flexible coupling properly to ensure optimal performance?

Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:

1. Pre-Installation Inspection:

Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling’s size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.

2. Shaft Preparation:

Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.

3. Coupling Hub Installation:

Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.

4. Alignment:

Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer’s alignment specifications and tolerance limits.

5. Tightening Fasteners:

Once the shafts are properly aligned, tighten the coupling’s fasteners to the manufacturer’s recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.

6. Run-Out Check:

After installation, perform a run-out check to verify that the coupling’s rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling’s performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.

7. Lubrication:

Ensure that the flexible coupling is adequately lubricated, following the manufacturer’s recommendations. Proper lubrication reduces friction and wear, enhancing the coupling’s efficiency and reliability.

8. Periodic Inspection and Maintenance:

Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.

Summary:

Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer’s guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.

flexible coupling

What are the challenges of using flexible couplings in heavy-duty industrial machinery?

Using flexible couplings in heavy-duty industrial machinery can offer numerous benefits, such as reducing shock loads, accommodating misalignment, and protecting connected equipment. However, there are several challenges that need to be addressed to ensure successful and reliable performance:

  • Torsional Stiffness: Heavy-duty machinery often requires high torsional stiffness to maintain accurate rotational timing and prevent energy losses. Selecting a flexible coupling with the appropriate level of torsional stiffness is crucial to avoid excessive torsional deflection and maintain power transmission efficiency.
  • High Torque and Speed: Heavy-duty machinery typically operates at high torque and speed levels. The flexible coupling must be capable of handling these intense loads without exceeding its torque or speed ratings, which could lead to premature failure.
  • Alignment and Runout: Proper shaft alignment is critical for the reliable operation of flexible couplings in heavy-duty machinery. Misalignment can cause additional stresses and premature wear on the coupling and connected components. Achieving and maintaining precise alignment is essential to maximize coupling performance.
  • Environmental Conditions: Heavy-duty industrial machinery often operates in harsh environments with exposure to dust, dirt, chemicals, and extreme temperatures. Flexible couplings must be constructed from durable and corrosion-resistant materials to withstand these conditions and maintain their functionality over time.
  • Impact and Shock Loads: Some heavy-duty machinery may experience frequent impact and shock loads, which can lead to fatigue and failure in the flexible coupling. Choosing a coupling with high shock load capacity and fatigue resistance is vital to ensure longevity and reliability.
  • Regular Maintenance: Heavy-duty machinery demands rigorous maintenance schedules to monitor the condition of flexible couplings and other components. Timely inspection and replacement of worn or damaged couplings are essential to prevent unexpected downtime and costly repairs.
  • Coupling Selection: Properly selecting the right type of flexible coupling for the specific application is crucial. Different types of couplings offer varying levels of misalignment compensation, torque capacity, and environmental resistance. Choosing the wrong coupling type or size can lead to inefficiencies and premature failures.

Despite these challenges, using flexible couplings in heavy-duty industrial machinery can provide significant advantages. By carefully considering the application requirements, selecting high-quality couplings, and implementing regular maintenance protocols, engineers can overcome these challenges and enjoy the benefits of flexible couplings, including increased equipment lifespan, reduced maintenance costs, and improved overall system performance.

flexible coupling

Can flexible couplings accommodate high torque and high-speed applications?

Yes, flexible couplings can accommodate both high torque and high-speed applications, but the suitability depends on the specific design and material of the flexible coupling. Different types of flexible couplings have varying torque and speed capacities, and it’s crucial to select the right type of coupling based on the application requirements.

High Torque Applications:

Some flexible couplings, such as gear couplings and disc couplings, are designed to handle high torque levels. Gear couplings consist of toothed hubs that mesh with each other, providing a robust and efficient torque transmission. They are commonly used in heavy-duty industrial applications, such as steel mills, mining equipment, and power generation plants, where high torque loads are prevalent.

Disc couplings are also suitable for high torque applications. They use a series of flexible metal discs that can handle significant torque while compensating for misalignment. Disc couplings are often used in high-speed machinery and critical applications where precise torque transmission is essential.

High-Speed Applications:

Flexible couplings can also be used in high-speed applications. For instance, certain disc couplings, elastomeric couplings, and grid couplings are capable of handling high rotational speeds. These couplings have low inertia, which means they can respond quickly to changes in speed and provide efficient power transmission at high RPMs.

Elastomeric couplings, such as jaw couplings and tire couplings, are commonly used in various industrial applications, including pumps, compressors, and fans, where both torque and speed requirements are high. They offer good flexibility and damping properties, making them suitable for applications with high-speed variations and vibrations.

Considerations:

When selecting a flexible coupling for high torque and high-speed applications, several factors should be considered:

  • The torque and speed ratings provided by the coupling manufacturer should be checked to ensure they meet or exceed the application’s requirements.
  • The design and materials of the coupling should be suitable for the specific operating conditions, including temperature, environment, and potential exposure to corrosive substances.
  • Proper alignment and installation of the coupling are critical to ensure optimal performance and prevent premature wear.
  • In some cases, it may be necessary to use additional components, such as torque limiters or speed reducers, to protect the coupling and the connected equipment from excessive loads or speed fluctuations.

In conclusion, flexible couplings can indeed accommodate high torque and high-speed applications, but the appropriate coupling type and proper selection are essential to ensure reliable and efficient performance in these demanding conditions.

China Standard Flexible Jaw Couplings Spider Couplings Industry  China Standard Flexible Jaw Couplings Spider Couplings Industry
editor by CX 2024-05-16

China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Use of Flexible Flange Couplings in Applications Requiring Electrical Isolation

Yes, flexible flange couplings can be used in applications requiring electrical isolation between shafts. In certain industrial scenarios, it is essential to electrically isolate the connected equipment or shafts to prevent the flow of electrical current between them. This requirement is common in applications involving sensitive electronic components, motors, generators, or systems where grounding issues need to be avoided.

To achieve electrical isolation, flexible flange couplings can be designed using non-conductive or insulating materials. Some key considerations for using flexible flange couplings in such applications are as follows:

  1. Material Selection: Instead of metallic materials commonly used in standard couplings, such as steel or aluminum, the flexible flange couplings for electrical isolation purposes can be manufactured from non-conductive materials like thermoplastics, certain composites, or specially formulated insulating elastomers.
  2. Insulating Sleeve: Some flexible flange couplings may feature an insulating sleeve or barrier between the two flanges. This sleeve prevents direct contact between the flanges and acts as an electrical barrier, ensuring isolation between the shafts.
  3. Dielectric Strength: When selecting materials for electrical isolation, it is crucial to consider their dielectric strength, which determines the maximum voltage they can withstand without breakdown. The materials chosen should have adequate dielectric strength to suit the application’s electrical requirements.
  4. Performance Considerations: It is important to note that while achieving electrical isolation, the selected materials should still meet the necessary performance criteria for the specific application. The coupling must retain its ability to transmit torque, accommodate misalignment, and provide damping characteristics as required.
  5. Environmental Factors: Consideration should also be given to the environmental conditions of the application, such as temperature, humidity, and chemical exposure. The chosen materials should be compatible with the operating environment to ensure long-term reliability.

By carefully selecting appropriate materials and incorporating insulating features, flexible flange couplings can effectively provide electrical isolation between shafts while fulfilling the mechanical and functional requirements of the machinery or equipment. This enables the safe and reliable operation of electrical systems without the risk of electrical currents passing through the coupling and connected components.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Types of Flexible Flange Couplings in Industrial Applications

Flexible flange couplings come in various designs and configurations to suit different industrial applications. Some of the commonly used types include:

  • 1. Diaphragm Couplings: Diaphragm couplings consist of two flanges with a thin metal diaphragm in between. The diaphragm is designed to flex and move with minimal deformation, allowing for high torsional stiffness and excellent misalignment compensation. They are commonly used in high-speed and high-precision applications, such as pumps, compressors, and servo systems.
  • 2. Disc Couplings: Disc couplings use a series of stainless steel or metallic discs stacked alternately to create flexibility. These couplings can handle high torque, have good misalignment capabilities, and provide excellent vibration damping. They are suitable for applications that require high torque transmission, such as industrial machinery and power generation equipment.
  • 3. Grid Couplings: Grid couplings feature a flexible grid element made of spring steel or elastomeric material between the flanges. The grid provides flexibility while maintaining high torsional rigidity. These couplings are widely used in industries like material handling, conveyors, and pumps.
  • 4. Elastomeric Couplings: Elastomeric couplings use a rubber or elastomeric material as the flexible element. They are highly efficient in dampening vibrations and can accommodate misalignment. Elastomeric couplings find applications in various industries, including HVAC systems, marine equipment, and conveyor systems.
  • 5. Tyre Couplings: Tyre couplings have a flexible tyre-like element made of rubber between the flanges. They offer good shock absorption, compensate for misalignment, and reduce vibrations. These couplings are commonly used in heavy-duty applications, such as mining equipment and steel rolling mills.
  • 6. Oldham Couplings: Oldham couplings use three discs – two outer discs with radial slots and an intermediate disc with perpendicular slots. The intermediate disc slides between the outer discs, providing flexibility and misalignment compensation. They are ideal for transmitting torque between shafts with limited parallel misalignment and are used in printing machines, textile equipment, and robotics.

Conclusion: The selection of a specific type of flexible flange coupling depends on the requirements of the industrial application, including the amount of misalignment, torque transmission, speed, and the need for vibration dampening. Each type of coupling offers unique advantages, making them suitable for various industrial setups where reliable and flexible power transmission is essential.

China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Hot selling Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2024-05-08

China Hot selling Flexible Jaw Couplings Spider Couplings Industry

Product Description

Product Description

* Compact designing, easy installation
.
* Convenient maintenance, small size and light weight .

* Widely used in medium and minor power transmission systems driven by motors, such as speed reducers, hoists, compressors, conveyors, spinning and weaving machines and ball mills .

* Permittable relative displacement :
1) Radial displacement :0.2~0.6 mm
2) Angle displacement :0°30~1°30

 

 

 

Packing & Delivery

Packaging Pictures of Worm Gear Reduce and Helical Geared Motor

 

Inner Packing: PP bag with carton;
Outer Packing: Carton boxes and wooden cases;
Leadtime: 20-30 days CHINAMFG order confirm.
 

About Us

Welcome to CHINAMFG Group, China’s leading gearbox manufacturer since 1976. Our journey, spHangZhou over 4 decades, has established us as a benchmark of CHINAMFG in the power transmission industry.
 

We proudly made history in the 1980s by exporting the first China-made reducer and have since maintained our status as China’s top gearbox exporter.Today, we proudly export 70% of our products to more than 40 countries, including key markets like Italy, Germany, the USA, Spain, Brazil, Argentina, Turkey, and India.
 

Our extensive product range includes worm gear reducers, helical gearboxes, shaft-mounted reducers, helical bevel gearboxes, and slewing drives.These products are vital across various sectors, from industrial production equipment, power, and mining to metallurgy, agriculture, construction, and marine, as well as in the burgeoning clean energy sector.
 

Our team of experts, among the world’s best, upholds the highest standards for both standard and OEM products. Driven by innovation and cutting-edge technology, we prioritize quality and our customers’ needs. Our state-of-the-art facilities, equipped with the latest machinery and a team of seasoned professionals, ensure consistent quality and impressive daily output. We’re proud to produce 4,000 units daily, totaling over 1.2 million units annually.
 

We cordially invite you to visit us and witness first hand why CHINAMFG Group is the gem of China’s gearbox manufacturing. Seeing is believing, and we eagerly anticipate demonstrating our expertise and craftsmanship. Join us in driving the future forward.
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling deal with backlash and torsional stiffness?

A flexible coupling deals with backlash and torsional stiffness in the following ways:

  • Backlash: Backlash refers to the play or clearance between mating teeth in mechanical systems. In certain couplings, such as gear couplings, some degree of backlash is unavoidable due to the space between the teeth. However, flexible couplings with elastomeric or beam-type elements typically have minimal to no backlash. The flexibility of these elements allows them to maintain continuous contact and transmit torque smoothly without any gaps or play between components.
  • Torsional Stiffness: Torsional stiffness is the ability of a coupling to resist rotational deformation or twisting under torque. It is essential to have adequate torsional stiffness in some applications to ensure accurate motion transmission and responsiveness. Flexible couplings exhibit a balance between torsional stiffness and flexibility. While they allow for a degree of angular and parallel misalignment, they still possess sufficient torsional stiffness to transmit most of the torque efficiently. This characteristic helps maintain the precision of motion control systems and prevents power losses due to deformation.

The design and materials used in flexible couplings contribute to their ability to address both backlash and torsional stiffness effectively. Here are some key features:

  • Elastomeric Elements: Couplings with elastomeric elements, such as rubber or polyurethane, provide excellent flexibility to absorb misalignments and dampen vibrations. They also exhibit minimal backlash as the elastomeric material maintains continuous contact between the coupling components.
  • Beam-Type Couplings: Beam-type couplings use thin metal beams to transmit torque. These couplings offer high torsional stiffness while still accommodating misalignments. The beams can flex slightly under torque, absorbing shocks and compensating for misalignment without compromising torsional rigidity.
  • Composite Couplings: Some flexible couplings use composite materials that combine the advantages of different materials to achieve specific performance characteristics. These composites can offer low backlash and precise torsional stiffness, making them suitable for demanding applications.
  • High-Quality Manufacturing: The precision manufacturing of flexible couplings ensures that components fit together with minimal clearances, reducing backlash. Additionally, high-quality materials contribute to better torsional stiffness and overall performance.

Overall, flexible couplings strike a balance between flexibility to accommodate misalignments and sufficient torsional stiffness to transmit torque efficiently. By effectively addressing backlash and torsional stiffness, these couplings contribute to the smooth and reliable operation of various mechanical systems.

flexible coupling

What are the key considerations for selecting a flexible coupling for high-speed applications?

When selecting a flexible coupling for high-speed applications, several critical considerations should be taken into account to ensure optimal performance and reliability:

  • Material and Design: Choose a flexible coupling made from high-quality materials that can withstand the high rotational speeds without experiencing excessive wear or fatigue. Consider designs that are specifically engineered for high-speed applications, ensuring they have the required torsional stiffness and damping characteristics.
  • Balance: Imbalance at high speeds can lead to vibration and reduce the lifespan of the coupling and connected components. Look for precision-balanced flexible couplings that minimize vibration and avoid any potential resonance issues at operating speeds.
  • Torsional Stiffness: In high-speed applications, torsional stiffness is crucial to maintaining accurate rotational timing and preventing torque losses. Choose a flexible coupling with adequate torsional stiffness to minimize angular deflection under load.
  • Dynamic Balancing: Dynamic balancing is essential for flexible couplings used in high-speed applications. A dynamically balanced coupling reduces vibrations caused by rotational imbalances, increasing the smoothness and stability of the system.
  • Temperature Resistance: High-speed operations can generate significant heat, so select a flexible coupling that can withstand the elevated temperatures without compromising its mechanical properties or causing premature failure.
  • Alignment and Runout Tolerance: Accurate alignment of the coupling with the shafts is crucial to prevent additional stress and vibration. Consider couplings with high runout tolerance and ease of alignment to facilitate proper installation.
  • Service Life and Maintenance: Evaluate the expected service life of the flexible coupling in high-speed applications. Low-maintenance couplings are desirable to reduce downtime and maintenance costs.
  • Application Specifics: Consider the specific requirements of the high-speed application, such as the magnitude of torque, axial movement, and the presence of shock loads. Choose a coupling that can handle these specific demands while maintaining performance at high speeds.
  • Compliance with Standards: Ensure that the selected flexible coupling complies with relevant industry standards and specifications, especially those related to high-speed performance and safety.

By carefully considering these key factors, engineers can choose a flexible coupling that meets the demands of high-speed applications, delivering reliable and efficient power transmission while minimizing the risk of premature wear, vibration, and downtime.

flexible coupling

What is a flexible coupling and how does it work?

A flexible coupling is a mechanical device used to connect two shafts while allowing for relative movement between them. It is designed to transmit torque from one shaft to another while compensating for misalignment, vibration, and shock. Flexible couplings are essential components in various rotating machinery and systems, as they help protect the connected equipment and enhance overall performance.

Types of Flexible Couplings:

There are several types of flexible couplings, each with its unique design and characteristics. Some common types include:

  • Jaw Couplings: Jaw couplings feature elastomer spiders that fit between two hubs. They can accommodate angular and parallel misalignment while dampening vibrations.
  • Disc Couplings: Disc couplings use thin metallic discs to connect the shafts. They are highly flexible and provide excellent misalignment compensation.
  • Gear Couplings: Gear couplings use gear teeth to transmit torque. They offer high torque capacity and can handle moderate misalignment.
  • Beam Couplings: Beam couplings use a single piece of flexible material, such as a metal beam, to transmit torque while compensating for misalignment.
  • Bellows Couplings: Bellows couplings use a bellows-like structure to allow for axial, angular, and parallel misalignment compensation.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot to allow for misalignment compensation.

How a Flexible Coupling Works:

The operation of a flexible coupling depends on its specific design, but the general principles are similar. Let’s take the example of a jaw coupling to explain how a flexible coupling works:

  1. Two shafts are connected to the coupling hubs on either side, with an elastomer spider placed between them.
  2. When torque is applied to one shaft, it causes the spider to compress and deform slightly, transmitting the torque to the other shaft.
  3. In case of misalignment between the shafts, the elastomer spider flexes and compensates for the misalignment, ensuring smooth torque transmission without imposing excessive loads on the shafts or connected equipment.
  4. The elastomer spider also acts as a damping element, absorbing vibrations and shocks during operation, which reduces wear on the equipment and enhances system stability.

Overall, the flexibility and ability to compensate for misalignment are the key features that allow a flexible coupling to function effectively. The choice of a specific flexible coupling type depends on the application’s requirements, such as torque capacity, misalignment compensation, and environmental conditions.

China Hot selling Flexible Jaw Couplings Spider Couplings Industry  China Hot selling Flexible Jaw Couplings Spider Couplings Industry
editor by CX 2024-04-26

China Standard CHINAMFG Lms Type Double Flange CHINAMFG Flexible Jaw Couplings

Product Description

LMS Double Flange Type Plum Elastic Coupling(GB/T 5272-2002)

Product Description

 

Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

 

Other products

 

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

 

Company Profile

 

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

Our service

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.
 

FAQ

 

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China Standard CHINAMFG Lms Type Double Flange CHINAMFG Flexible Jaw Couplings  China Standard CHINAMFG Lms Type Double Flange CHINAMFG Flexible Jaw Couplings
editor by CX 2024-04-24

China Standard Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling

Product Description

Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer PIN MH Rigid NM Jaw Gear   transmission industrial gearbox manufacture parts  pric F Flexible Coupling

YOXz is a coincidence machine with moving wheel which is in the output point of the coincidence machine and is connected with elastic axle connecting machine (plum CHINAMFG type elastic axle connecting machine or elastic pillar axle-connecting machine or even the axle-connecting machine designated by customers). Usually there are 3 connection types.

YOXz is inner wheel driver which has tight structure and the smallest axle size.The fittings of YOXz have a wide usage, simple structure and the size of it has basically be unified in the trade.The connection style of YOXz is that the axle size of it is longer but it is unnecessary to move the electromotive machine and decelerating machine. Only demolish the weak pillar and connected spiral bolt can unload the coincidence machine so it is extreme convenient. Customer must offer the size of electromotive machine axle (d1 L1) and decelerating machine axle (d2 L2). The wheel size (Dz Lz C) in the table is just for reference, the actual size is decided by customers.

 

Main Features

1. Applies to flexible drive shaft ,allowing a larger axial radial displacement and displacement.

2.Has a simple structure,easy maintenance .

3.Disassembly easy

4.low noise

5.Transmission efficiency loss,long useful working life.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China Standard Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling  China Standard Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling
editor by CX 2024-04-23

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings

Product Description

 Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc CHINAMFG Flex Rigid Drive Shaft NM yox Fluid Jaw Flexible Chain Gear Couplings

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

 

Coupling is a jaw type coupling that works for a variety of light duty to heavy duty motors used in electric power transmission.

This is 1 of our safest types of products. The reason being that these couplings work even when the elastomer fails and there is no metal to metal contact.

They perform in well-standing oil, grease, moisture, sand, and dirt and nearly 850,000 bore combinations that can be customised as per the customer’s needs.

They are used in light-weight, medium, or heavy electrical motors and devices for power transmission through internal combustion.

Production workshop:
Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Specialized Flexible Flange Couplings for High-Torque or High-Speed Applications

Yes, there are specialized flexible flange couplings designed specifically for high-torque or high-speed applications. These couplings are engineered to meet the specific demands of such industrial scenarios, where torque and speed requirements are elevated. Here are some key features and design considerations of these specialized couplings:

  1. High-Torque Capacity: Couplings for high-torque applications are constructed with robust materials and enhanced structural integrity to withstand the increased torque loads. They may incorporate larger and thicker flanges, as well as heavy-duty flexible elements such as metallic or composite discs. These elements help transmit and distribute torque efficiently while minimizing the risk of fatigue or failure.
  2. High-Speed Capabilities: In high-speed applications, dynamic balance is crucial to prevent vibration and resonance issues. Specialized couplings for high-speed scenarios are meticulously balanced during the manufacturing process to ensure smooth operation at elevated rotational speeds. Additionally, low weight and aerodynamic design may be implemented to minimize rotational inertia and reduce centrifugal forces.
  3. Temperature Resistance: High-torque and high-speed applications can generate considerable heat due to friction and mechanical forces. Therefore, specialized flexible flange couplings for such scenarios are often constructed from materials with high-temperature resistance. Metallic alloys or advanced polymers with excellent thermal properties are common choices to maintain performance and integrity under elevated temperatures.
  4. Customizable Designs: Manufacturers of flexible flange couplings often offer customization options to tailor the coupling’s specifications for unique high-torque or high-speed requirements. This customization may involve selecting specific materials, flange sizes, or incorporating additional features like cooling fins or heat dissipation mechanisms.
  5. Torsional Stiffness: While flexible couplings are known for their ability to accommodate misalignments, specialized high-torque couplings strike a balance between flexibility and torsional stiffness. The coupling should be flexible enough to handle misalignments while providing the necessary torsional stiffness to ensure accurate torque transmission.

Overall, these specialized flexible flange couplings are engineered to deliver reliable and efficient performance in challenging high-torque or high-speed applications. They ensure smooth power transmission, minimize vibrations, and protect connected equipment from excessive mechanical stress, ultimately enhancing the safety and productivity of the machinery they serve.

flexible flange coupling

Flexible Flange Couplings for Pumps, Compressors, and Marine Propulsion Systems

Yes, flexible flange couplings are suitable for use in pumps, compressors, and marine propulsion systems. These couplings offer several advantages that make them well-suited for such applications:

  • Misalignment Tolerance: Pumps, compressors, and marine propulsion systems often experience misalignments due to thermal expansion, vibration, or other factors. Flexible flange couplings can accommodate both angular and axial misalignments, ensuring smooth operation and reducing stress on the connected equipment.
  • Vibration Damping: These coupling types are designed to dampen vibrations, which is crucial in pump and compressor applications where excessive vibration can lead to equipment damage and premature wear. The vibration damping properties help improve the overall system’s reliability and reduce maintenance requirements.
  • High Torque Transmission: Pumps, compressors, and marine propulsion systems often require high torque transmission to handle heavy loads and provide efficient power transfer. Flexible flange couplings are capable of transmitting high torques, making them suitable for these demanding applications.
  • Electrical Isolation: In some cases, electrical isolation between shafts is necessary to prevent the transfer of electrical currents or static electricity. Flexible flange couplings made from insulating materials can provide this isolation, ensuring safe and efficient operation in certain pump and compressor applications.
  • Corrosion Resistance: Marine propulsion systems are exposed to harsh environments with high humidity and saltwater exposure. Flexible flange couplings made from materials such as stainless steel or corrosion-resistant alloys can withstand these conditions, offering extended service life and reliable performance.
  • Easy Installation and Maintenance: Flexible flange couplings are relatively easy to install and require minimal maintenance, making them attractive choices for various industrial applications, including pumps, compressors, and marine propulsion systems.
  • Compact Design: Space may be limited in pumps, compressors, and marine propulsion systems. Flexible flange couplings have a compact design, which helps in integrating them into the equipment without significant modifications.

Overall, flexible flange couplings are versatile and can be customized to suit specific requirements, making them well-suited for use in pumps, compressors, and marine propulsion systems. However, it’s essential to consider factors such as torque capacity, material compatibility, operating conditions, and system requirements to select the most appropriate coupling for each application.

flexible flange coupling

Selecting the Right Flexible Flange Coupling for Specific Machinery or Equipment

Choosing the appropriate flexible flange coupling involves considering several factors to ensure optimal performance and longevity. Here are the key steps to guide the selection process:

  1. Load and Torque Requirements: Determine the maximum torque and load that the coupling will experience during operation. Select a coupling that can handle these loads without exceeding its rated capacity.
  2. Misalignment Compensation: Assess the expected misalignment between the shafts. Different coupling types have varying degrees of misalignment capabilities, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the specific misalignment in your application.
  3. Speed: Consider the rotational speed of the machinery or equipment. High-speed applications may require couplings with good balance and vibration-damping properties to avoid resonance and ensure smooth operation.
  4. Vibration Damping: Evaluate the level of vibration present in the system. If vibration damping is critical, elastomeric couplings or disc couplings may be more suitable choices.
  5. Space Constraints: Take into account the available space for the coupling. Some couplings have a compact design, making them suitable for tight spaces.
  6. Environmental Factors: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Choose a coupling material that can withstand these conditions without corrosion or degradation.
  7. Serviceability: Assess the ease of installation and maintenance. Some couplings allow for easy replacement without disassembling the connected machinery.
  8. Cost: Compare the cost of different coupling options and balance it with the required performance and reliability for your application.

Conclusion: Properly selecting a flexible flange coupling involves understanding the specific requirements of the machinery or equipment, as well as the operating conditions it will be subjected to. By considering factors such as load, misalignment, speed, and environmental conditions, you can make an informed decision and choose the right coupling that ensures efficient power transmission and minimizes the risk of premature failure.

China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings  China Professional Flange Cast Iron Coupling Steel Universal Joint Cardan Pump Rubber Motor Disc Curved Tooth Flex Rigid Drive Shaft Nm Yox Fluid Jaw Flexible Chain Gear Couplings
editor by CX 2024-04-23

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling

Product Description

Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer PIN MH Rigid NM Jaw Gear   transmission industrial gearbox manufacture parts  pric F Flexible Coupling

YOXz is a coincidence machine with moving wheel which is in the output point of the coincidence machine and is connected with elastic axle connecting machine (plum CHINAMFG type elastic axle connecting machine or elastic pillar axle-connecting machine or even the axle-connecting machine designated by customers). Usually there are 3 connection types.

YOXz is inner wheel driver which has tight structure and the smallest axle size.The fittings of YOXz have a wide usage, simple structure and the size of it has basically be unified in the trade.The connection style of YOXz is that the axle size of it is longer but it is unnecessary to move the electromotive machine and decelerating machine. Only demolish the weak pillar and connected spiral bolt can unload the coincidence machine so it is extreme convenient. Customer must offer the size of electromotive machine axle (d1 L1) and decelerating machine axle (d2 L2). The wheel size (Dz Lz C) in the table is just for reference, the actual size is decided by customers.

 

Main Features

1. Applies to flexible drive shaft ,allowing a larger axial radial displacement and displacement.

2.Has a simple structure,easy maintenance .

3.Disassembly easy

4.low noise

5.Transmission efficiency loss,long useful working life.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Maintenance Requirements for Flexible Flange Couplings

Proper maintenance is essential to ensure the optimal performance and longevity of flexible flange couplings. Regular inspections and maintenance routines can help detect and prevent potential issues before they escalate into major problems. Here are the key maintenance requirements for flexible flange couplings:

  • Visual Inspections: Regularly inspect the coupling for any signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric elements and ensure that the flanges are securely fastened.
  • Lubrication: Some flexible flange couplings may require periodic lubrication at the flange interface or other moving parts. Check the manufacturer’s guidelines for the recommended lubrication schedule and use the appropriate lubricant.
  • Torque Checks: Verify that the flange bolts or screws are tightened to the specified torque. Loose fasteners can lead to misalignment and reduce the coupling’s performance.
  • Alignment: Ensure that the connected shafts are correctly aligned. Misalignment can cause increased stress on the coupling and lead to premature failure. If misalignment is detected, it should be corrected promptly.
  • Environmental Protection: In harsh environments, such as those with high humidity, chemicals, or abrasive particles, consider implementing protective measures to shield the coupling from potential damage.
  • Inspections After Shock Loads: If the coupling is subjected to shock loads or excessive stress, perform thorough inspections to check for any deformation or damage that may have occurred.
  • Replace Worn Elements: Over time, the elastomeric elements of the coupling may wear out. Replace these elements when they show signs of deterioration to maintain the coupling’s performance.

It is important to follow the manufacturer’s maintenance guidelines and recommendations specific to the particular flexible flange coupling model being used. Regular maintenance not only ensures the coupling’s optimal performance but also enhances the safety of the overall mechanical system.

flexible flange coupling

Where to Find Reputable Suppliers or Manufacturers of Flexible Flange Couplings for Your Specific Power Transmission Needs?

When looking for reputable suppliers or manufacturers of flexible flange couplings, consider the following steps:

  1. Online Research: Start by conducting online research to identify companies that specialize in power transmission components, including flexible flange couplings. Look for manufacturers with a strong reputation, positive customer reviews, and a history of delivering high-quality products.
  2. Industry Directories: Industry-specific directories and trade publications often feature listings of suppliers and manufacturers. These directories can be a valuable resource to find companies that offer flexible flange couplings tailored to your industry’s needs.
  3. Trade Shows and Exhibitions: Attend trade shows and exhibitions related to power transmission, where you can meet suppliers in person, examine product samples, and discuss your specific requirements.
  4. Referrals and Recommendations: Seek referrals or recommendations from industry peers, colleagues, or professionals who have experience with flexible flange couplings. Their insights can lead you to reliable suppliers.
  5. Supplier Websites: Visit the websites of potential suppliers to gather detailed information about their products, manufacturing processes, certifications, and capabilities. Look for suppliers with a comprehensive product range and customization options.
  6. Quality and Certifications: Verify if the supplier follows industry standards and has relevant certifications such as ISO, ASME, or API. These certifications demonstrate their commitment to quality and compliance.
  7. Technical Support: Evaluate the technical support and customer service provided by the supplier. A reliable supplier should be responsive to your queries, offer guidance on selecting the right coupling, and provide after-sales support.
  8. Sample and Testing: Request samples of the flexible flange couplings to evaluate their quality and suitability for your application. Some suppliers may also offer testing services to validate the performance of their products.
  9. Price and Delivery: Obtain quotes from multiple suppliers to compare prices, delivery times, and shipping costs. However, prioritize quality and reliability over cost alone.

By following these steps, you can find reputable suppliers or manufacturers that can meet your specific power transmission needs with high-quality flexible flange couplings. Remember to conduct thorough research and consider factors beyond price to ensure you choose a supplier that can provide durable and efficient couplings for your application.

flexible flange coupling

Torque and Speed Limits for Flexible Flange Coupling Designs

Flexible flange couplings come in various designs, each with its specific torque and speed limits. These limits are essential considerations when selecting the appropriate coupling for a particular application. The following factors influence the torque and speed limits:

  • Coupling Material: The material used in the flexible flange coupling plays a crucial role in determining its torque and speed limits. Couplings made from materials with higher tensile and shear strength, such as steel or alloy, can handle higher torque loads and operate at higher speeds compared to those made from elastomeric materials.
  • Elastomer Hardness: For flexible flange couplings with elastomeric elements, the hardness of the elastomer affects the torque and speed limits. Softer elastomers generally offer greater flexibility and misalignment accommodation but may have lower torque and speed ratings. Harder elastomers can handle higher torque and speed but provide less flexibility.
  • Coupling Size: The physical size of the coupling also impacts its torque and speed limits. Larger couplings, with more substantial and thicker flanges and elastomer elements, can generally handle higher torque loads and operate at higher speeds.
  • Design and Construction: The design and construction of the flexible flange coupling influence its overall strength and performance. Couplings with optimized designs, precision machining, and robust construction can withstand higher torque and speed levels.
  • Application Requirements: The specific requirements of the application, such as the level of misalignment, the magnitude of torque loads, and the desired rotational speed, will determine the suitable flexible flange coupling with the appropriate torque and speed limits.

Manufacturers of flexible flange couplings provide detailed specifications, including torque and speed ratings, for each coupling design they offer. It is crucial to adhere to these specified limits to ensure the safe and reliable operation of the coupling in the intended application.

During the selection process, engineers and designers should carefully match the torque and speed requirements of the application with the capabilities of the chosen flexible flange coupling. This ensures that the coupling operates optimally and provides long-lasting and efficient power transmission in the mechanical system.

China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling  China OEM Couplings Fluid Flange Flexible HRC Chain Fenaflex Spacer Pin Mh Rigid Nm Jaw Gear Transmission Industrial Gearbox Manufacture Parts Pric F Flexible Coupling
editor by CX 2024-04-03

China Professional CHINAMFG Lmd Type No Lubrication Easy Maintenance Jaw Single Flange Jaw Spider Couplings flange coupling

Product Description

LMD Single Flange Type Plum Elastic Coupling(GB/T 5272-2002)

♦Description
Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.

The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially. LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with * can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flange coupling

Proper Installation and Alignment of Flange Couplings

Installing and aligning a flange coupling properly is crucial to ensure its optimal performance and to prevent premature wear or failure. Here are the steps to follow for a successful installation:

  1. Prepare the Components: Before starting the installation, ensure that all the components, including the flange coupling, shafts, and fasteners, are clean and free from dirt or debris. Inspect the coupling for any visible damage or defects.
  2. Check Shaft Alignment: Verify the alignment of the shafts before installing the flange coupling. Misalignment can lead to increased stresses on the coupling and other connected equipment.
  3. Use Proper Lubrication: Apply the recommended lubricant to the contact surfaces of the flange coupling. Proper lubrication reduces friction and wear, enhancing the coupling’s lifespan.
  4. Align the Flange Coupling: Position the flange coupling between the shafts and ensure that the bolt holes are aligned with the corresponding holes in the shafts.
  5. Insert Fasteners: Insert the bolts or screws through the bolt holes and hand-tighten them. Avoid fully tightening any fasteners at this stage.
  6. Check Runout: Measure the runout of the coupling during rotation to verify that it is within acceptable limits. Excessive runout indicates a misaligned coupling.
  7. Properly Torque Fasteners: Using a torque wrench, tighten the fasteners in a cross-pattern to the manufacturer’s recommended torque values. This ensures even distribution of the load and prevents distortion of the flange coupling.
  8. Recheck Alignment: After torquing the fasteners, recheck the shaft alignment to ensure it has not shifted during the tightening process.
  9. Inspect the Assembly: Conduct a final visual inspection of the installed flange coupling and surrounding components to verify that everything is properly aligned and secured.
  10. Perform Test Run: Run the equipment with the newly installed flange coupling under no-load conditions initially to check for any unusual vibrations or noises.
  11. Monitor Performance: During the initial operation and throughout regular use, monitor the flange coupling’s performance and check for signs of wear, misalignment, or other issues.

Professional Installation: If you are unsure about the installation process or need to install a flange coupling in a complex system, consider seeking assistance from a qualified professional or coupling manufacturer’s technical support team. Proper installation is essential for ensuring the long-term reliability and performance of the flange coupling and the connected equipment.

flange coupling

Flange Couplings and Variable Operating Conditions

Flange couplings are designed to accommodate a wide range of operating conditions and loads, making them versatile and suitable for various applications. The key factors that enable flange couplings to handle variable operating conditions and loads include:

  • Flexible Design: Some flange couplings, such as flexible flange couplings or disc couplings, are designed to have some degree of flexibility. This flexibility allows them to compensate for misalignment between shafts, which is often encountered in real-world applications.
  • Material Selection: Flange couplings are available in different materials to suit specific operating conditions. For example, stainless steel flange couplings are ideal for corrosive environments, while high-strength steel couplings are suitable for heavy-duty applications.
  • Customization: Many flange coupling manufacturers offer customization options to tailor the coupling’s design to meet specific requirements. This may include modifying the coupling’s size, material, or torque capacity.
  • Load Distribution: Flange couplings are designed to distribute loads evenly between the connected shafts. This even distribution of load helps prevent premature wear and reduces stress on the shafts and other connected equipment.
  • High Torque Capacity: Flange couplings are available in various designs, including those suitable for high torque applications. This allows them to handle varying levels of torque without compromising performance.
  • Temperature and Environmental Resistance: Flange couplings made from appropriate materials can withstand a wide range of temperatures and environmental conditions, making them suitable for both indoor and outdoor applications.

It is essential to consider the specific requirements of your application and the potential variations in operating conditions and loads when selecting a flange coupling. This ensures that the chosen coupling can reliably and efficiently transmit power while accommodating any changes in the operating environment.

flange coupling

Can Flange Couplings Accommodate High Torque and High-Speed Applications?

Yes, flange couplings are designed to accommodate both high torque and high-speed applications. They are capable of transmitting significant amounts of torque between shafts while maintaining stable and efficient power transmission. The ability to handle high torque and high-speed applications depends on various factors, including the design, material, and size of the flange coupling.

1. Design: Flange couplings are available in different designs, such as rigid flange couplings and flexible flange couplings. Rigid flange couplings are more suitable for applications that require precise shaft alignment and minimal misalignment. On the other hand, flexible flange couplings can accommodate slight misalignments and are suitable for applications where shock or vibration may occur. The design of the coupling is crucial in determining its torque and speed capabilities.

2. Material: Flange couplings are manufactured from various materials, including steel, stainless steel, aluminum, and other alloys. The material selection is essential in determining the coupling’s strength, durability, and resistance to wear and fatigue. High-quality materials are used in flange couplings for high torque and high-speed applications to ensure their reliability and performance.

3. Size and Dimensions: The size and dimensions of the flange coupling play a significant role in determining its torque and speed ratings. Larger flange couplings with increased diameter and thickness can handle higher torque and speed compared to smaller couplings. It is essential to choose the appropriate size of the coupling based on the application’s torque and speed requirements.

4. Surface Finish: The surface finish of the flange coupling is critical, especially in high-speed applications. A smooth surface finish reduces friction and wear between the mating surfaces of the flanges, bolts, and nuts, thereby improving the overall efficiency of the coupling.

5. Lubrication: Proper lubrication is essential for flange couplings in high-speed and high-torque applications. Lubricants help reduce friction and wear, dissipate heat, and prevent premature failure of the coupling components.

6. Manufacturer’s Recommendations: It is crucial to follow the manufacturer’s recommendations and guidelines regarding the maximum torque and speed ratings of the flange coupling. Exceeding the recommended limits can lead to coupling failure and potential damage to the connected equipment.

In conclusion, flange couplings can be effectively used in high torque and high-speed applications when selected and maintained properly. Choosing the right design, material, size, and adhering to the manufacturer’s guidelines ensures that the flange coupling can handle the required torque and rotational speed efficiently and reliably.

China Professional CHINAMFG Lmd Type No Lubrication Easy Maintenance Jaw Single Flange Jaw Spider Couplings  flange couplingChina Professional CHINAMFG Lmd Type No Lubrication Easy Maintenance Jaw Single Flange Jaw Spider Couplings  flange coupling
editor by CX 2024-03-15

China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings

Product Description

LMD Single Flange Type Plum Elastic Coupling(GB/T 5272-2002)

♦Description
Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.

The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with * can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

Real-World Examples of Successful Flexible Flange Coupling Installations and Their Benefits

There are numerous real-world examples of successful flexible flange coupling installations that have demonstrated significant benefits in various industrial applications. Here are some notable examples:

Example 1: Industrial Pumps

In an industrial pumping system used for fluid transfer, the existing rigid coupling was causing excessive vibration and wear on the pump and motor bearings. The vibrations were leading to frequent maintenance and downtime. After retrofitting with flexible flange couplings, the system experienced a drastic reduction in vibration levels. The couplings effectively dampened vibrations and accommodated minor misalignments, resulting in smoother operation and longer bearing life. The benefits included reduced maintenance costs and increased overall system reliability.

Example 2: Marine Propulsion

In a marine propulsion system, the conventional coupling was not effectively dampening the torsional vibrations generated by the engine. This vibration was affecting the comfort of passengers and causing stress on the drivetrain components. By installing a flexible flange coupling, the system’s torsional stiffness was optimized, and the vibrations were significantly reduced. The result was a smoother and quieter ride for passengers, reduced wear on components, and improved fuel efficiency.

Example 3: Compressors

In a gas compressor application, the existing coupling was unable to handle the misalignment between the driver and driven shafts, leading to premature coupling failures. By replacing the coupling with a flexible flange coupling that could accommodate both angular and axial misalignment, the system experienced improved reliability and reduced unplanned downtime. The flexible coupling also helped reduce peak torque loads during start-up, minimizing stress on the system and extending the equipment’s lifespan.

Example 4: Wind Turbines

Wind turbines require couplings that can handle varying wind conditions and torque fluctuations. Flexible flange couplings have been successfully implemented in wind turbine drivetrains, allowing them to withstand the dynamic loads and misalignments experienced in the field. The flexibility of these couplings ensures smooth power transmission and helps protect the gearbox and generator from damaging vibrations, contributing to the long-term performance and reliability of the wind turbine.

Overall, flexible flange couplings have proven to be reliable and effective solutions in various industries. Their ability to dampen vibrations, accommodate misalignments, and transmit high torque makes them valuable components for improving the performance, efficiency, and lifespan of mechanical systems and equipment.

These real-world examples highlight the versatility and benefits of flexible flange couplings, and they serve as successful case studies for the advantages of using these couplings in diverse industrial applications.

flexible flange coupling

Types of Flexible Flange Couplings in Industrial Applications

Flexible flange couplings come in various designs and configurations to suit different industrial applications. Some of the commonly used types include:

  • 1. Diaphragm Couplings: Diaphragm couplings consist of two flanges with a thin metal diaphragm in between. The diaphragm is designed to flex and move with minimal deformation, allowing for high torsional stiffness and excellent misalignment compensation. They are commonly used in high-speed and high-precision applications, such as pumps, compressors, and servo systems.
  • 2. Disc Couplings: Disc couplings use a series of stainless steel or metallic discs stacked alternately to create flexibility. These couplings can handle high torque, have good misalignment capabilities, and provide excellent vibration damping. They are suitable for applications that require high torque transmission, such as industrial machinery and power generation equipment.
  • 3. Grid Couplings: Grid couplings feature a flexible grid element made of spring steel or elastomeric material between the flanges. The grid provides flexibility while maintaining high torsional rigidity. These couplings are widely used in industries like material handling, conveyors, and pumps.
  • 4. Elastomeric Couplings: Elastomeric couplings use a rubber or elastomeric material as the flexible element. They are highly efficient in dampening vibrations and can accommodate misalignment. Elastomeric couplings find applications in various industries, including HVAC systems, marine equipment, and conveyor systems.
  • 5. Tyre Couplings: Tyre couplings have a flexible tyre-like element made of rubber between the flanges. They offer good shock absorption, compensate for misalignment, and reduce vibrations. These couplings are commonly used in heavy-duty applications, such as mining equipment and steel rolling mills.
  • 6. Oldham Couplings: Oldham couplings use three discs – two outer discs with radial slots and an intermediate disc with perpendicular slots. The intermediate disc slides between the outer discs, providing flexibility and misalignment compensation. They are ideal for transmitting torque between shafts with limited parallel misalignment and are used in printing machines, textile equipment, and robotics.

Conclusion: The selection of a specific type of flexible flange coupling depends on the requirements of the industrial application, including the amount of misalignment, torque transmission, speed, and the need for vibration dampening. Each type of coupling offers unique advantages, making them suitable for various industrial setups where reliable and flexible power transmission is essential.

China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings  China Custom CHINAMFG Lmd Type CHINAMFG Single Flange Flexible Jaw Couplings
editor by CX 2024-03-06

China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings

Product Description

LMS Double Flange Type Plum Elastic Coupling(GB/T 5272-2002)

Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission. Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

Type Norminal torque(Tn/N·m) Speed(Np) Shaft hole diameter
(d1,d2,dz)
Length of the shaft hole LO D D1 Type of elastic parts Mass Rotary inertia
The hardness of elastic parts LM LMD, LMS Y type J1,Z type L
(recommend)
LM LMD LMS LMD, LMS LM LMD LMS LM LMD LMS
a/HA b/HD L
80+5 60+5 r·min-1 Mm kg kg·m2
LM1
LMD1
LMS1
25 45 15300 8500 12,14 32 27 35 86 92 98 50 90 MT1-a  -b 0.66 1.21 1.33 0.0002 0.0008 0.0013
16,18,19 42 30
20,22,24 52 38
25 62 44
LM2
LMD2
LMS2
50 100 1200 7600 16,18,19 42 30 38 95 101.5 108 60 100 MT2-a  -b 0.93 1.65 1.74 0.0004 0.0014 0.0571
20,22,24 52 38
25,28 62 44
30 82 60
LM3
LMD3
LMS3
100 200 10900
 
6900 20,22,24 52 38 40 103 110 117 70 110 MT3-a  -b 1.41 2.36 2.33 0.0009 0.0571 0.0034
25,28 62 44
30,32 82 60
LM4
LMD4
LMS4
140 280 9000
 
6200 22,24 52 38 45 114 122 130 85 125 MT4-a  -b 2.18 3.56 3.38 0.002 0.005 0.0064
25,28 62 44
30,32,35,38 82 60
40 112 84
LM5
LMD5
LMS5
350 400 7300
 
5000 25,28 62 44 50 127 138.5 150 105 150 MT5-a  -b 3.60 6.36 6.07 0.005 0.0135 0.0175
30,32,35,38 82 60
40,42,45 112 84
LM6
LMD6
LMS6
400 710 6100
 
4100 30,32,35,38 82 60 55 143 155 167 185 185 MT6-a  -b 6.07 10.77 10.47 0.0114 0.0329 0.0444
40,42,45,48 112 84
LM7
LMD7
LMS7
630 1120 5300 3700 35*,38* 82 60 60 159 172 185 205 205 MT7-a  -b 9.09 15.30 14.22 0.5712 0.0581 0.571
40*,42*,45,48,50,55 112 84
LM8
LMD8
LMS8
1120 2240 4500 3100 45*,48*,50,55,56 112 84 70 181 195 209 170 240 MT8-a  -b 13.56 22.72 21.16 0. 0571 0.1175 0.1493
60,63,65 142 107
LM9
LMD9
LMS9
1800 3550 3800 2800 50*,55*,56* 112 84 80 208 224 240 200 270 MT9-a  -b 21.40 34.44 30.70 0.1041 0.2333 0.2767
60,63,65,70,71,75 142 107
80 172 132
LM10
LMD10
LMS10
2800 5600 3300 2500 60*,63*,65*,70,71,75 142 107 90 230 248 268 230 305 MT10-a  -b 32.03 51.36 44.55 0.2105 0.4594 0.5262
80,85,90,95 172 132
100 212 167
LM11
LMD11
LMS11
4500 9000 2900 2200 71*,71*,75* 142 107 100 260 284 308 260 350 MT11-a  -b 49.52 81.30 70.72 0.4338 0.9777 1.1362
80*,85*,90,95 172 132
100,110,120 212 167
LM12
LMD12
LMS12
6300 12500 2500 1900 80*,85*,90*95 172 132 115 297 321 345 300 400 MT12-a  -b 73.45 115.53 99.54 0.8205 1.751 1.9998
100,110,120,125 212 167
130,140,150 252 202
LM13
LMD13
LMS13
11200 2000 2100 1600 90*,95* 172 132 125 323 348 373 360 460 MT13-a  -b 103.86 161.79 137.53 1.6718 3.667 3.6719
100*,110*,120*,125* 212 167
130,140,150 252 202
LM14
LMD14
LMS14
12500 25000 1900 1500 100*,110*,120*,125* 212 167 135 333 358 383 400 500 MT14-a  -b 127.59 196.32 165.25 2.499 4.8669 5.1581
130*,140*,150 252 202
160 302 242

NOTE:
1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z – type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible flange coupling

Handling Angular and Axial Misalignments with Flexible Flange Couplings

Yes, flexible flange couplings are designed to handle both angular and axial misalignments simultaneously. These couplings use flexible elastomeric elements between the flanges, allowing them to accommodate different types of misalignments that may occur during the operation of rotating machinery.

Angular Misalignment: When the shafts are not perfectly aligned and form an angle with each other, it results in angular misalignment. Flexible flange couplings can tolerate a certain degree of angular misalignment due to the flexibility of the elastomeric elements. As the shafts rotate and the angle changes, the elastomeric material can flex and adapt to the varying positions, transmitting torque smoothly without inducing excessive stress on the machinery.

Axial Misalignment: Axial misalignment occurs when the shafts are not in the same straight line along their axis. This type of misalignment can lead to axial movement of the shafts relative to each other during operation. Flexible flange couplings can also handle axial misalignment to some extent due to the elastomeric material’s ability to absorb and compensate for the axial movements. This helps to prevent additional forces or loads being transmitted to the connected equipment and minimizes wear on the coupling itself.

It is important to note that while flexible flange couplings can accommodate certain degrees of misalignment, excessive misalignment beyond their specified limits can still cause premature wear and reduce the coupling’s efficiency. Therefore, it is crucial to install and operate the couplings within the manufacturer’s recommended tolerances for angular and axial misalignments to ensure their optimal performance and longevity.

flexible flange coupling

How do Flexible Flange Couplings Ensure Efficient Torque Transmission and Minimal Backlash?

Flexible flange couplings are designed to efficiently transmit torque between two shafts while minimizing backlash, ensuring smooth and reliable power transmission in mechanical systems. Here’s how they achieve these goals:

1. Flexibility: The key feature of flexible flange couplings is their inherent flexibility. They are made of materials that can deform slightly under load, allowing them to absorb misalignments and angular displacements between the shafts. This flexibility helps in distributing the load evenly across the coupling and prevents concentrated stress points that can lead to backlash or premature failure.

2. Absorption of Misalignments: In real-world applications, it is challenging to achieve perfect alignment between two shafts due to manufacturing tolerances, thermal expansion, or dynamic forces. Flexible flange couplings can accommodate both angular and axial misalignments, compensating for these alignment errors. By allowing the shafts to find their natural positions within the coupling, they reduce stress on the components and ensure efficient torque transmission.

3. Resilient Materials: Flexible flange couplings are typically made of resilient materials such as high-quality elastomers or flexible metallic elements like stainless steel. These materials have excellent damping properties, which means they can absorb vibrations and shocks during operation. By reducing vibrations, the couplings contribute to smoother torque transmission and lower noise levels.

4. High Torque Capacity: Despite their flexibility, modern flexible flange couplings are engineered to handle high torque loads. The coupling’s design and material selection are optimized to maintain structural integrity and transmit torque efficiently even under heavy loads.

5. No Mechanical Play: Backlash refers to the rotational play or slack between the connected shafts. Flexible flange couplings minimize backlash by securely connecting the shafts without any mechanical play. The coupling’s flexibility allows it to maintain contact with the shafts continuously, ensuring precise torque transmission without any noticeable free movement.

6. Torsional Stiffness: Flexible flange couplings are designed with a balance between flexibility and torsional stiffness. While they can accommodate misalignments, they also provide sufficient torsional rigidity to transmit torque efficiently. This balance ensures that the coupling can dampen vibrations and misalignments while still maintaining reliable torque transmission.

7. Maintenance and Lubrication: Proper maintenance, including regular inspection and lubrication, is essential to ensure the longevity and optimal performance of flexible flange couplings. Adequate lubrication helps reduce friction and wear, further improving torque transmission efficiency.

Overall, flexible flange couplings are versatile components that play a crucial role in efficient power transmission and ensuring smooth operation in various mechanical systems. Their ability to handle misalignments, dampen vibrations, and transmit torque without backlash makes them an ideal choice for critical applications in industries such as manufacturing, power generation, marine, and many others.

flexible flange coupling

Working Principle of a Flexible Flange Coupling and its Advantages

A flexible flange coupling is designed to connect two shafts in a mechanical system while compensating for misalignment and torsional vibrations. It consists of two flanges, one on each shaft, connected by a flexible element in between.

Working Principle: When torque is transmitted through the coupling, the flexible element allows for slight angular, parallel, and axial misalignment between the shafts. This flexibility is crucial in cases where perfect alignment is difficult to achieve or maintain during operation. The coupling’s design and materials enable it to handle the relative movement between the shafts while transmitting torque smoothly.

The flexible element can be made of various materials, such as elastomers, metals, or composite materials. Elastomeric materials like rubber or polyurethane offer excellent vibration damping properties, while metallic elements provide higher torque transmission capabilities.

Advantages of Flexible Flange Couplings:

  • Misalignment Compensation: Flexible flange couplings can accommodate both angular and parallel misalignment, as well as a combination of both. This capability helps to reduce stress on the connected machinery and prevents premature wear.
  • Vibration Damping: Couplings with elastomeric elements act as effective vibration dampers, reducing resonance and minimizing vibrations that can damage the equipment.
  • Torsional Compliance: The flexibility of the coupling allows it to absorb torsional vibrations, preventing shocks from being transmitted through the system.
  • Easy Installation: Flexible flange couplings are relatively easy to install, and they do not require precise alignment during assembly, saving time and effort in the setup process.
  • High Torque Transmission: Couplings with metallic elements can handle high torque loads, making them suitable for heavy-duty applications.
  • Compact Design: The compact design of flexible flange couplings allows them to be used in limited spaces where other coupling types might not fit.
  • Low Maintenance: In general, these couplings have low maintenance requirements, contributing to reduced downtime and operational costs.

Conclusion: Flexible flange couplings offer a versatile and efficient solution for connecting rotating shafts in various mechanical systems. Their ability to compensate for misalignment, dampen vibrations, and transmit torque reliably makes them well-suited for a wide range of industrial applications. When selecting a coupling, it’s crucial to consider the specific requirements of the machinery and the operating conditions to ensure optimal performance and longevity.

China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings  China high quality CHINAMFG Lms Type Double Transmission Parts Coupling Flange CHINAMFG Flexible Jaw Couplings
editor by CX 2024-02-23